Advertisement

Polymer Science, Series B

, Volume 60, Issue 6, pp 789–797 | Cite as

New Microporous Thiophene-Pyridine Functionalized Imine-Linked Polymer for Carbon-Dioxide Capture

  • Suha S. AltarawnehEmail author
  • Taher S. Ababneh
  • Lo’ay A. Al-Momani
  • Ibtesam Y. Aljaafreh
Functional Polymers
  • 5 Downloads

Abstract

The synthesis, porosity and the capability for carbon dioxide gas-capture of functionalized thiophene- pyridine microporous imine-linked polymer synthesized via the Schiff base condensation reaction between (1,3,5-triformyl thienyl benzene) and 2,6-diaminopyridine is described. The structural formation of the polymer was successfully confirmed via 13C NMR (CP-MAS) and IR spectroscopy, and elemental analysis. The polymer has the good thermal stability up to 380°C, a non-defined aggregated particles morphology and amorphous nature. From the argon sorption isotherm at 87 K, the polymer revealed a moderate Brunauer–Emmett–Teller surface area (372 m2/g) and micro-size pores (~5 Å). The CO2 uptake was studied at 273 and 298 K to evaluate the polymer tendency for capturing CO2 from the surrounding atmosphere. At 298 K, the polymer has shown a reversible adsorption-desorption isotherm with significant uptake (11.4 wt %) at 1.0 atm. The binding energy of CO2 at zero gas coverage is 24 kJ/mol and decreased upon loading.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Xu, B. Tan, and A. Parthiban, in Synthesis and Applications of Copolymers (Wiley, Hoboken, 2014), p. 125.Google Scholar
  2. 2.
    B. Li, Z. Guan, X. Yang, W. Wang, I. Hussain, K. Song, B. Tan, and T. Li, J. Mater. Chem. A 2, 11930 (2014).CrossRefGoogle Scholar
  3. 3.
    R. Dawson, E. Stockel, R. Holst, D. Adams, and A. Cooper, Energy Environ. Sci. 4, 4239 (2011).CrossRefGoogle Scholar
  4. 4.
    Z. Chang, D. Zhang, Q. Chen, and X. Bu, Phys. Chem. Chem. Phys. 15, 5430 (2013).CrossRefGoogle Scholar
  5. 5.
    J. Chun, S. Kang, N, Park, E. Park, X. Jin, K. Kim, H. Seo, S. Lee, H. Kim, W. Kwon, Y. Park, J. Kim, Y. Kim, and S. Son, J. Am. Chem. Soc. 136, 6786 (2014).CrossRefGoogle Scholar
  6. 6.
    L. Tan and B. Tan, Chem. Soc. Rev. 46, 3322 (2017).CrossRefGoogle Scholar
  7. 7.
    C. Diercks and O. Yaghi, Science 3, 355 (2017).Google Scholar
  8. 8.
    D. Ramimoghadam, E. Gray, and C. Webb, Int. J. Hydrogen Energy 41, 16944 (2016).CrossRefGoogle Scholar
  9. 9.
    C. Sun, P. Wang, H. Wang, and B. Han, Polym. Chem. 7, 5031 (2016).CrossRefGoogle Scholar
  10. 10.
    A. Rengaraj, P. Puthiaraj, Y. Haldorai, N. Heo, S. Hwang, Y. Han, S. Kwon, W. Ahn, and Y. Huh, ACS Appl.Mater. Interfaces 8, 8947 (2016).CrossRefGoogle Scholar
  11. 11.
    S. Altarawneh, S. Behera, P. Jena, and H. El-Kaderi, Chem. Commun. 50, 3571 (2014).CrossRefGoogle Scholar
  12. 12.
    G. Zhu and H. Ren, in Porous Organic Frameworks: Design, Synthesis and Their Advanced Applications (Springer, Berlin; Heidelberg, 2015), p. 13.Google Scholar
  13. 13.
    M. Rabbani, T. Islamoglu, and H. El-Kaderi, J. Mater. Chem. A 5, 258 (2017).CrossRefGoogle Scholar
  14. 14.
    W. D. Guerra, R. A. Rossi, A. B. Pierini, and S. M. Barolo, J. Org. Chem. 80, 928 (2015).CrossRefGoogle Scholar
  15. 15.
    E. Wolkenberg, D. Wisnoski, H. Leister, Y. Wang, Z. Zhijian, and W. Lindsley, Org. Lett. 6, 1453 (2004).CrossRefGoogle Scholar
  16. 16.
    N. Joshi, V. Saxena, A. Singh, S. P. Koiry, A. K. Debnath, M. M. Chehimi, D. K. Aswal, and S. K. Gupta, Sens. Actuators, B 200, 227 (2014).CrossRefGoogle Scholar
  17. 17.
    S. Altarawneh, T. Jazzazi, T. Ababneh, T. Al Shboul, and I. Al Jaafreh, J. Appl. Polym. Sci. 134, 44331 (2017).CrossRefGoogle Scholar
  18. 18.
    I. Aljaafreh, S. Altarawneh, M. Alomari, A. Almaabreh, and M. Al Amelat, Indones. J. Pure Appl. Chem. Res. 6, 34 (2017).CrossRefGoogle Scholar
  19. 19.
    S. Altarawneh, T. Islamoglu, A. Sekizkardes, and H. El-Kaderi, Environ. Sci. Technol. 49, 4715 (2015).CrossRefGoogle Scholar
  20. 20.
    J. Wang, I. Senkovska, M. Oschatz, M. Lohe, L. Borchardt, A. Heerwig, Q. Liu, and S. Kaskel, ACS Appl. Mater. Interfaces 5, 3160 (2013).CrossRefGoogle Scholar
  21. 21.
    H. Sun, X. Zhao, P. Wang, H. Wang, and B. Han, Sci. China: Chem. 60, 1067 (2017).CrossRefGoogle Scholar
  22. 22.
    D. Pyles, W. Crowe, L. Baldwin, and P. McGrier, ACS Macro Lett. 5, 1055 (2016).CrossRefGoogle Scholar
  23. 23.
    J. J. P. Stewart, J. Mol. Model. 13, 1173 (2007).CrossRefGoogle Scholar
  24. 24.
    J. Binkley, J. Pople, and W. Hehre, J. Am. Chem. Soc. 102, 939 (1980).CrossRefGoogle Scholar
  25. 25.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  26. 26.
    A. D. Becke, J. Chem. Phys. 104, 1040 (1996).CrossRefGoogle Scholar
  27. 27.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 37, 785 (1988).CrossRefGoogle Scholar
  28. 28.
    G. A. Petersson, A. Bennett,T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, and J. A. Mantzaris, J. Chem. Phys. 89, 2193 (1988).CrossRefGoogle Scholar
  29. 29.
    G. A. Petersson, T. G. Tensfeldt, and J. A. Montgomery, Jr., J. Chem. Phys. 94, 6091 (1991).CrossRefGoogle Scholar
  30. 30.
    Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2006).CrossRefGoogle Scholar
  31. 31.
    E. Reed, R. B. Weinstock, and F. J. Weinhold, J. Chem. Phys. 83, 735 (1985).CrossRefGoogle Scholar
  32. 32.
    K. D. Vogiatzis, A. Mavrandonakis, W. Klopper, and G. E. Froudakis, ChemPhysChem 10, 374 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Suha S. Altarawneh
    • 1
    Email author
  • Taher S. Ababneh
    • 1
  • Lo’ay A. Al-Momani
    • 1
  • Ibtesam Y. Aljaafreh
    • 1
  1. 1.Department of Chemistry and Chemical TechnologyTafila Technical UniversityTafilaJordan

Personalised recommendations