Polymer Science, Series B

, Volume 60, Issue 6, pp 780–788 | Cite as

Obtainment and Comparative Study of Electrochemical Behavior of Composite Electrodes Based on Polyaniline and Its N-Substituted Derivatives

  • V. V. Abalyaeva
  • G. V. Nikolaeva
  • E. N. Kabachkov
  • S. G. KiselevaEmail author
  • A. V. Orlov
  • O. N. Efimov
  • G. P. Karpacheva
Functional Polymers


Hybrid polymer nanomaterials based on N-substituted polyanilines and graphene oxide are synthesized for the first time via the in situ oxidative polymerization of 3,6-dianiline-2,5-dichloro-1,4-benzoquinone and 3,6-phenylenediamine-2,5-dichloro-1,4-benzoquinone in the presence of graphene oxide. The morphology and electrochemical properties of composite electrodes made of graphite foil support covered with polyaniline (or nanocomposites based on its derivatives containing the polyaniline chain with electroactive N-substituents and graphene oxide) coating are studied. It is shown that the electroconductive nanocomposite material characterized by the electrochemical capacitance above 1000 F/g and the stability of capacitive characteristics under prolonged charge/discharge cycles in a proton (1М H2SO4) electrolyte is formed on the graphite foil support.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Peng, G. F. Ma, W. M. Ying, A. D. Wang, H. H. Huang, and Z. Q. Lei, J. Power Sources 211, 40 (2012).CrossRefGoogle Scholar
  2. 2.
    W. Wang, F. Zhu, Y. Dai, H. Zhang, and Y. Chen, Russ. J. Electrochem. 53, 147 (2017).CrossRefGoogle Scholar
  3. 3.
    O. Ya. Mezhuev, Yu. V. Korshak, and M. I. Shtil’man, Russ. Chem. Rev. 86, 1271 (2017).CrossRefGoogle Scholar
  4. 4.
    Y. M. Shulga, S. A. Baskakov, V. V. Abalyaeva, O. N. Efimov, N. Y. Shulga, A. Michtchenko, L. LartundoRojas, L. A. Moreno-R, J. G. Cabañas-Moreno, and V. N. Vasilets, J. Power Sources 224, 195 (2013).CrossRefGoogle Scholar
  5. 5.
    V. V. Abalyaeva, S. A. Baskakov, and N. N. Dremova, Russ. J. Electrochem. 51, 916 (2015).CrossRefGoogle Scholar
  6. 6.
    T. Lee, T. Yun, B. Park, B. Sharma, H. Song, and B. Kim, J. Mater. Chem. 22, 21092 (2012).CrossRefGoogle Scholar
  7. 7.
    E. M. Geniès, M. Lapkowski, and J. F. Penneau, J. Electroanalyt. Chem. Interfacial Electrochem. 249, 97 (1988).CrossRefGoogle Scholar
  8. 8.
    Y. Kieffel, J. Pierre Travers, A. Ermolieff, and D. Rouchon, J. Appl. Polym. Sci. 86, 395 (2002).CrossRefGoogle Scholar
  9. 9.
    V. V. Abalyaeva, L. I. Tkachenko, G. V. Nikolaeva, A. V. Orlov, S. G. Kiseleva, O. N. Efimov, and G. P. Karpacheva, Polym. Sci., Ser. B 59, 459 (2017).CrossRefGoogle Scholar
  10. 10.
    S. G. Kiseleva, A. V. Orlov, and G. P. Karpacheva, Polym. Sci., Ser. B 60, (2018). (in press).Google Scholar
  11. 11.
    S. G. Kiseleva, A. V. Orlov, T. A. Borukaev, G. N. Bondarenko, and G. P. Karpacheva, in Proceedings of XIII International Research and Practice Conference “New Polymer Composite Materials”, Nalchik, Russia, 2017 (Print Tsentr, Nalchik, 2017), p. 110.Google Scholar
  12. 12.
    Y. G. Wang, H.-Q. Li, and Y.-Y. Xia, Adv. Mater. 18, 2619 (2006).CrossRefGoogle Scholar
  13. 13.
    V. V. Abalyaeva, S. A. Baskakov, and N. N. Dremova, Russ. J. Electrochem. 51, 976 (2015).CrossRefGoogle Scholar
  14. 14.
    R. V. Salvatierra, G. Zitzer, S.-A. Savu, A. P. Alves, A. J. G. Zarbin, T. Chasse, M. B. Casu, and M. L. M. Rocco, Synth. Met. 203, 16 (2015).CrossRefGoogle Scholar
  15. 15.
    A. Falcou, A. Longeau, D. Marcsacq, P. Hourquebie, and A. Duchene, Synth. Met. 101, 647 (1999).CrossRefGoogle Scholar
  16. 16.
    I. Šedenková, E. N. Kohyushenko, J. Stejskal, M. Trchová, and J. Prokeš, Synth. Met. 161, 1353 (2011).CrossRefGoogle Scholar
  17. 17.
    Y. S. Negi and P. V. Adhyapak, J. Macromol. Sci., Part C: Polym. Rev. 42, 35 (2002).CrossRefGoogle Scholar
  18. 18.
    M. Trchova and J. Stejskal, Pure Appl. Chem. 83, 1803 (2011).CrossRefGoogle Scholar
  19. 19.
    M. S. Refat, O. B. Ibrahim, H. Al-Didamony, K. M. A. El-Noir, and L. El-Zayat, J. Saudi Chem. Soc. 16, 227 (2012).CrossRefGoogle Scholar
  20. 20.
    M. S. Refat, L. El-Zayat, and O. Z. Yesilel, Polyhedron 27, 475 (2008).CrossRefGoogle Scholar
  21. 21.
    X. Zhang, R. Chan-Yu-King, A. Jose, and S. K. Manohar, Synth. Met. 145, 23 (2004).CrossRefGoogle Scholar
  22. 22.
    J. Kan and Sh. Zhang, Synth. Met. 145, 37 (2004).CrossRefGoogle Scholar
  23. 23.
    N. E. Sorokina, I. V. Nikol’skaya, S. G. Ionov, and V. V. Avdeev, Russ. Chem. Bull. 54, 1749 (2005).CrossRefGoogle Scholar
  24. 24.
    N. S. Grigoryan, A. A. Gubanov, T. A. Vagramyan, and Yu. V. Korshak, Russ. J. Appl. Chem. 88, 1150 (2015).CrossRefGoogle Scholar
  25. 25.
    M. Kim, Ch. Lee, and J. Jang, Adv. Funct. Mater. 24, 2489 (2014).CrossRefGoogle Scholar
  26. 26.
    V. V. Abalyaeva, S. A. Baskakov, and N. N. Dremova, Russ. J. Electrochem. 51, 916 (2015).CrossRefGoogle Scholar
  27. 27.
    L. Al-Mashat, K. Shin, K. Kalantar-zadeh, J. D. Plessis, H. R. W. Kojima, R. B. Kaner, D. Li, X. Gou, S. J. Ippolito, and W. W. Wodarski, J. Phys. Chem. C 114, 16168 (2010).CrossRefGoogle Scholar
  28. 28.
    Y.-Z. Hong, H.-Ch. Tsai, Y.-H. Wang, J. Aumanen, P. Myllyperkiö, A. Johansson, L.-Y. Chang, Ch.-H. Chen, M. Pettersson, and W.-Y. Woon, Carbon 129, 396 (2018).CrossRefGoogle Scholar
  29. 29.
    C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, and F. Béguin, Carbon 43, 1293 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Abalyaeva
    • 1
  • G. V. Nikolaeva
    • 1
  • E. N. Kabachkov
    • 1
    • 3
  • S. G. Kiseleva
    • 2
    Email author
  • A. V. Orlov
    • 2
  • O. N. Efimov
    • 1
  • G. P. Karpacheva
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Topchiev Intstitute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  3. 3.Chernogolovka Scientific CenterRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations