Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Synthesis of a New Class of Materials with a Regular (Periodic) Interconnected Microstructure

Abstract

The fundamental principles for the synthesis of a new class of materials with a controlled (periodic) interconnected structure based on triply periodic minimal surfaces are formulated. The chemical synthesis based on the reaction-diffusion Turing reaction, which enables us to fabricate periodic microstructures, is analyzed.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    Von Shnering, H.G. and Nesper, R., How nature adapts chemical structures to current surfaces, Angew. Chem., Int. Ed. Engl., 1987, vol. 26, pp. 1059–1200.

  2. 2

    Andersson, S., Hyde, S.T., Larsson, K., and Lidin, S., Minimal surfaces and structures: from inorganic and metal crystals to cell membranes and biopolymers, Chem. Rev., 1976, vol. 88, pp. 221–242.

  3. 3

    Andersson, S., Hyde, S.T., and von Shnering, H., The intrinsic curvature of solids, Zeitschr.Kristallogr., 1984, vol. 168, pp. 1–17.

  4. 4

    Von Shnering, H.G. and Nesper, R., Nodal surfaces of Fourier series: fundamental invariants of structured matter, Phys. B (Amsterdam, Neth.), 1991, vol. 83, pp. 407–412.

  5. 5

    Mackay, A., Crystallographic surfaces, Proc. R. Soc. London, Ser. A, 1993, vol. 442, pp. 47–59.

  6. 6

    Shevchenko, V.Ya., Malochkin, O.V., Panov, V.S., and Barinov, S.M., Size effect in synthesis of ultrafine ytterbia-stabilized zirconia by the sol–gel method, Dokl. Akad. Nauk, 1999, vol. 365, nos. 4–6, pp. 112–115.

  7. 7

    Turing, A.M., The chemical basis of morphogenesis, Phil. Trans. R. Soc. London, Ser. B, 1952, vol. 237, no. 641, pp. 37–72.

  8. 8

    Epstein, J.R. and Hu, B., Reaction-diffusion process on the nano and microlevels, Nat. Nanotechnol., 2016, vol. 11, pp. 312–319.

  9. 9

    Castets, V., Dulos, E., Boissonade, J., and de Kepper, P., Experimental evidence of a sustained standing twining-type nonequilibrium chemical patterns, Phys. Rev. Lett., 1990, vol. 64, pp. 2953–2956.

  10. 10

    Shoji, H. and Ohta, T., Computer simulation of three-dimensional Turing patterns in the Bengel–Epstein model, Phys. Rev. E, 2015, vol. 91, p. 032913.

  11. 11

    Shevchenko, V.Ya., Gordeev, S.K., Oryshchenko, A.S., Sokolov, V.N., Lebedev, L.A., Sychev, M.M., and Khristyuk, N.A., On the formation of the minimal-energy surface in the solid-state reactions of the formation of chromium carbide, Glass Phys. Chem., 2018, vol. 44, no. 6, pp. 518–523.

  12. 12

    Gurney, J., in Kimberlites and Related Rocks, Ross, J., Ed., No. 14 of GSA Spec. Publ., Blackwell, Carlton, 1989, vol. 2, pp. 935–965.

  13. 13

    Gogotsi, Y., Welz, S., Ersoy, D.A., and McNallan, M.J., Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure, Nature (London, U.K.), 2001, vol. 411, pp. 283–287.

  14. 14

    Zhou, H. and Singh, R., Kinetics model for growth of silicon carbide by the reaction of liquid silicon with carbon, J. Am. Ceram. Soc., 1995, vol. 78, pp. 2456–62.

  15. 15

    Ekström, T., New carbide composites with extraordinary properties, Key Eng. Mater., 1999, vols. 161–163, pp. 75–80.

  16. 16

    Timofeev, A. and Bogachev, E., RF Patent no. 2130509, 1999.

  17. 17

    Zhuk, A.E., General rules of SiC formation in diamond-containing composition at low pressure, Vestn. Belorus. NTU, 2007, no. 4, pp. 27–31.

  18. 18

    Tsekhanov, Yu. and Balaglinskaya, E., A method of obtaining a superhard composite material based on diamond nanopowder, RF Patent no. 2439186, 2012.

  19. 19

    Srivastava, V., Micro-structural characterization of Si-SiC ceramic derived from C/C-SiC composite, Am. J. Mater. Sci., 2012, vol. 2, no. 1, pp. 1–4.

  20. 20

    Isli, T., High-strength diamond-SiC composite and method for its manufacture, RF Patent No. 2012154898A, 2014.

  21. 21

    Matthey, B. and Höhn, S., Microstructural investigation of diamond–SiC composites produced by pressureless silicon infiltration, J. Eur. Ceram. Soc., 2016. https://doi.org/10.1016/j.jeurceramsoc.2016.12.008

  22. 22

    Hermann, M., Silicon-carbide-bonded diamond components for harsh environments—cost effective components with outstanding properties, Ceram. Appl., 2018, vol. 6, no. 1, pp. 64–68.

  23. 23

    Knippenberg, W., Growth phenomena in silicon carbide, Phillips Res. Rep., 1963, vol. 18, pp. 161–274.

  24. 24

    Shevchenko, V.Ya., Vvedenie v tekhnicheskuyu keramiku (Introduction to Technical Ceramics), Moscow: Nauka, 1993.

Download references

Funding

This study was performed with the support of a grant from the Russian Science Foundation (project no. 17-13-01382).

Author information

Correspondence to V. Ya. Shevchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.Y., Koval’chuk, M.V. & Oryshchenko, A.S. Synthesis of a New Class of Materials with a Regular (Periodic) Interconnected Microstructure. Glass Phys Chem 45, 412–418 (2019). https://doi.org/10.1134/S1087659620010186

Download citation

Keywords:

  • triply periodic minimal surfaces
  • Turing reaction
  • heterogenetic pairs of inorganic substances
  • diamond (carbon)–silicon system
  • carbides