Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Deposition of Films from a Mixture of Hexamethylcyclotrisilazane Vapor and Argon in Inductively Coupled Plasma


In an inductively coupled high-frequency discharge plasma, SiCxNy:H films are obtained from a mixture of hexamethylcyclotrisilazane vapor and argon at substrate temperatures of 100 to 400°C and a discharge power of 200 W. The simplest plasma components (nitrogen, cyan, silicon atoms, CH free radicals, and C2 dimers) are determined. Some physicochemical properties of the films, including the growth rate, types of chemical bonds, refractive index, transparency interval, and contact angle, are studied. The synthesized films have a polymer-like structure.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Berwind, M.F., Hashibon, A., Fromm, A., Gurr, M., Burmeister, F., and Eberl, C., Rapidly prototyping biocompatible surfaces with designed wetting properties via photolithography and plasma polymerization, Microfluid. Nanofluid., 2017, vol. 21, pp. 144–147.

  2. 2

    Ooi, P.C., Wee, M.F.M.R., Dee, Ch.F., Yap, Ch.Ch., Salleh, M.M., and Majlis, B.Y., Fabrication of transparent bistable switching memory device using plasma polymerized hexamethyldisiloxane layers with embedded graphene quantum dots, Thin Solid Films, 2018, vol. 645, pp. 45–50.

  3. 3

    Yan, X., Li, J., and Yi, L., Fabrication of pH-responsive hydrophilic/hydrophobic Janus cotton fabric via plasma-induced graft polymerization, Mater. Lett., 2017, vol. 208, pp. 46–49.

  4. 4

    Wróbel, A.M. and Kryszewski, M., Preparation, structure, and some properties of organosilicon thin polymer films obtained by plasma polymerization, Prog. Colloid Polym. Sci., 1991, vol. 85, pp. 91–101.

  5. 5

    Wagner, N.J., Gerberich, W.W., and Heberlein, V.R., Thermal plasma chemical vapor deposition of wear-resistant, hard Si–C–N coatings, Surf. Coat. Technol., 2006, vol. 201, pp. 4168–4173.

  6. 6

    Fainer, N.I., Plekhanov, A.G., and Asanov, I.P., Study of chemical bonds and element composition of silicon oxycarbonitride films by the methods of XP-, IR-, and energy-dispersive spectroscopy, Glass Phys. Chem., 2017, vol. 43, no. 5, pp. 410–416.

  7. 7

    Silicon Carbide—Materials, Processing and Applications in Electronic Devices, Mukherjee, M., Ed., Rijeka: InTech, 2011.

  8. 8

    Plasma Polymer Films, Biederman, H., Ed., London: Imperial College Press, 2004.

  9. 9

    Huang, Ch., Lin, H.-H., and Li, Ch., Atmospheric pressure plasma polymerization of super-hydrophobic nano-films using hexamethyldisilazane monomer, Plasma Chem. Plasma Process., 2015, vol. 35, pp. 1015–1028.

  10. 10

    Guo, S., Rochotzki, R., Lundström, I., and Arwin, H., Ellipsometric sensitivity to halothane vapors of hexamethyldisiloxane plasma polymer films, Sens. Actuators, B, 1997, vol. 44, pp. 243–247.

  11. 11

    Grill, A. and Neumayer, D.A., Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization, J. Appl. Phys., 2003, vol. 94, no. 10, pp. 6697–6707.

  12. 12

    Grill, A. and Patel, V., Ultralow dielectric constant pSiCOH films prepared with tetramethylcyclotetrasiloxane as skeleton precursor, J. Appl. Phys., 2008, vol. 104, p. 024113.

  13. 13

    Wróbel, A.M., Kryszewski, M., and Gazicki, M., Structure of glow discharge polysilazane thin films, Polymer, 1976, vol. 17, pp. 678–684.

  14. 14

    Wróbel, A.M., Kryszewski, M., and Gazicki, M., Oligomeric products in plasma-polymerized organosilicones, J. Macromol. Sci. Chem. A, 1983, vol. 20, pp. 583–618.

  15. 15

    Brooks, T.A. and Hess, D.W., Plasma-enhanced chemical vapor deposition of silicon nitride from 1,1,3,3,5,5-hexamethylcyclotrisilazane and ammonia, Thin Solid Films, 1987, vol. 153, pp. 521–529.

  16. 16

    Brooks, T.A. and Hess, D.W., Deposition chemistry and structure of plasma-deposited silicon nitride films from 1,1,3,3,5,5-hexamethylcyclotrisilazane, J. Appl. Phys., 1988, vol. 64, pp. 841–849.

  17. 17

    Brooks, T.A. and Hess, D.W., Characterization of silicon nitride and silicon carbonitride layers from 1,1,3,3,5,5-hexamethylcyclotrisilazane plasmas, J. Electrochem. Soc., 1988, vol. 135, no. 12, pp. 3086–3093.

  18. 18

    Smirnova, T.P., Khramova, L.V., Belyi, V.I., Solov’ev, A.P., and Taranova, I.V., Obtaining polymer films from hexamethylcyclotrisilazane in high-frequency discharge plasma, Vysokomol.Soedin., 1988, vol. 30, no. 1, pp. 164–169.

  19. 19

    Yakovkina, L.V., Smirnova, T.P., and Danilovich, O.V., Dehydrogenation mechanism for SiN:H layers prepared from hexamethylcyclotrisilazane, Inorg. Mater., 1996, vol. 32, no. 5, pp. 498–502.

  20. 20

    Fainer, N.I., Golubenko, A.N., Rumyantsev, Yu.M., and Maksimovskii, E.A., Use of hexamethylcyclotrisilazane for preparation of transparent films of complex compositions, Glass Phys. Chem., 2009, vol. 35, no. 3, pp. 274–283.

  21. 21

    Hoffmann, P.S., Fainer, N.I., Baake, O., Kosinova, M.L., Rumyantsev, Y.M., Trunova, V.A., Klein, A., Pollakowski, B., Beckhoff, B., and Ensinger, W., Silicon carbonitride nanolayers—synthesis and chemical characterization, Thin Solid Films, 2012, vol. 520, pp. 5906–5913.

  22. 22

    Fainer, N.I., From organosilicon precursors to multifunctional silicon carbonitride, Russ. J. Gen. Chem., 2012, vol. 82, no. 1, pp. 43–52.

  23. 23

    Orlikovskii, A.A., Rudenko, K.V., and Averkin, S.N., Fine-line plasma-enhanced processes on the basis of a set of pilot units with a scalable inductively coupled plasma source for use in microelectronics, High Energy Chem., 2006, vol. 40, no. 3, pp. 182–193.

  24. 24

    Rumyantsev, Yu.M., Chagin, M.N., Kosinova, M.L., and Kuznetsov, F.A., Synthesis of thin silicon carbonitride films from hexamethyldisilazane in an inductively coupled plasma reactor, Inorg. Mater., 2015, vol. 51, no. 9, pp. 897–902.

  25. 25

    Shayapov, V.R., Chagin, M.N., and Rumyantsev, Yu.M., Chemical composition of an inductively coupled hexamethyldisilazane–argon plasma and properties of films grown in this plasma, Inorg. Mater., 2016, vol. 52, no. 6, pp. 630–636.

  26. 26

    Rumyantsev, Yu.M., Chagin, M.N., Shayapov, V.R., Yushina, I.V., Kichai, V.N., and Kosinova, M.L., Synthesis and properties of thin films formed by vapor deposition from tetramethylsilane in a radio-frequency inductively coupled plasma discharge, Glass Phys. Chem., 2018, vol. 44, no. 3, pp. 174–182.

  27. 27

    Rearse, R.W.B. and Gaydon, A.G., The Identification of Molecular Spectra, Netherlands: Springer, 1976.

  28. 28

    Dieke, G.H., in The Hydrogen Molecule Wavelength Tables of Gerhard Heinrich Dieke, Crosswhite, H.M., Ed., New York: Wiley-InterScience, 1972.

  29. 29

    NIST Atomic Spectra Database, ver. 5.5.6, National Institute of Standards and Technology, Gaithersburg, MD.

  30. 30

    Anderson, D.R., Infrared, Raman, and ultraviolet spectroscopy, in Analysis of Silicones, Smith, A.L, Ed., New York: Willey-Interscience, 1974, Chap. 10, p. 247.

  31. 31

    Rao, C.N.R., Chemical Applications of Infrared Spectroscopy, New York: Academic, 1963.

  32. 32

    Launer, P.J., Infrared analysis of organo silicon compounds: Spectra structure correlations, in Silicon Compounds: Register and Review, 4th ed., Anderson, R., Arkles, B., and Larson, G.L., Eds., Bristol: Petrarch Systems, 1987, pp. 100–103.

  33. 33

    Maslowsky, E., Vibrational Spectra of Organometallics: Theoretical and Experimental Data, New York: Wiley, 2019.

  34. 34

    Stuart, S., Organosilicon Chemistry: Special Lectures Presented at the International Symposium on Organosilicon Chemistry, London: Butterworths, 1966.

  35. 35

    Wróbel, A.M., Klemberg, J.E., Wertheimer, M.R., and Schreiber, H.P., Polymerization of organosilicones in microwave discharges. II. Heated substrates, J. Macromol. Sci.,Ser. A, 1981, vol. 15, pp. 197–213.

  36. 36

    Wróbel, A.M., Aging process in plasma-polymerized organosilicon thin films, J. Macromol. Sci. A, 1985, vol. 22, no. 8, pp. 1089–1100.

  37. 37

    Guruvenket, S., Andrie, S., Simon, M., Johnson, K.W., and Sailer, R.A., Atmospheric pressure plasma CVD of amorphous hydrogenated silicon carbonitride (a-SiCN:H) films using triethylsilane and nitrogen, Plasma Process. Polym., 2011, no. 8, pp. 1126–1136.

  38. 38

    Shayapov, V.R., Khomyakov, M.N., and Rumyantsev, Yu.M., Scanning probe microscopy and nanoindentation studies of silicon carbonitride films obtained by PECVD from hexamethyldisilazane, Lett. Mater., 2014, vol. 4, no. 2, pp. 114–116.

  39. 39

    Wróbel, A.M., Silicon carbonitride (SiCN) films by remote hydrogen microwave plasma CVD from tris(dimethylamino)silane as novel single-source precursor, Chem. Vap. Deposit., 2010, vol. 16, pp. 211–215.

Download references


We thank Yu.M. Rumyantsev for discussing the results of the work and I.V. Yushina for obtaining the sample transmission spectra.


This work was carried out within the state assignment of the Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences.

Author information

Correspondence to V. R. Shayapov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shayapov, V.R., Chagin, M.N., Kolodin, A.N. et al. Deposition of Films from a Mixture of Hexamethylcyclotrisilazane Vapor and Argon in Inductively Coupled Plasma. Glass Phys Chem 45, 525–531 (2019).

Download citation


  • silicon carbonitride
  • hexamethylcyclotrisilazane
  • emission spectroscopy