Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Spectroscopy Study of Sm3+ Doped Fluorosilicate Glasses for Orange Emission Solid-State Device Application


Glass samples with formula as Li2O–BaO–GdF3–SiO2:Sm2O3 were fabricated by melt quenching method. Their optical, physical and luminescence properties were studied, for their potential applications in photonic device working in visible region. The Sm3+ ions and nearby ligands bonding nature were determined from bonding parameters (δ) that in turn were calculated from LGF absorption spectra. Oscillator strength of different absorption bands and Judd–Ofelt (JO) parameters (Ωλ (λ = 2, 4, 6)) were measured. JO-parameters and refractive index have been used to valuate various radiative properties of Sm3+ ions emission transitions in prepared glasses to explore their potential application as visible lasers. Furthermore, the emission was studied by exciting the LGF glass samples with different wavelengths (λex = 275, 402 nm). The orange to red ratios at different wavelengths (λex = 275 nm and X-ray) were evaluated to measure the Sm3+-ions local disorder in the glass network. The decreasing trend in experimental decay time (τexp) with Sm3+-ion concentration increasing was observed due to energy transfer. Best fit for the prepared glass, when studied in the light of Inokuti–Hirayama model was obtained for S = 6 indicating dipole–dipole type of energy transfer. The intense visible (orange) emission, high stimulated emission cross-section (σe), branching ratios (βR), radiative transition probability (AR), and reasonable quantum efficiency were determined for transition from 4G5/2 to 6H7/2 in glass. This suggests Sm3+ doped glass shows potential use for development of devices (laser and photonic) working in visible (orange) region.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.


  1. 1

    Rajaramakrishna, R., Ruangtawee, Y., and Kaewkhao, J., Sm3+-doped molybdenum gadolinium borate glasses for orange emission laser active medium, Ukr. J. Phys., 2018, vol. 63, no. 8, pp. 722–732.

  2. 2

    Khan, I., Rooh, G., Rajaramakrishna, R., Srisittipokakun, N., Kim, H.J., Kirdsiri, K., and Kaewkhao, J., Luminescence characteristics of Sm3+-doped lithium barium gadolinium silicate glasses for Orange LED’s, Spectrochim. Acta, Part A, 2019, vol. 214, pp. 14–20.

  3. 3

    Khan, I., Rooh, G., Rajaramakrishna, R., Srisittipokakun, N., Wongdeeying, C., Kiwsakunkran, N., Wantana, N., Kim, H.J., Kaewkhao, J., and Tuscharoen, S., Photoluminescence and white light generation of Dy2O3 doped Li2O–BaO–Gd2O3–SiO2 for white light LED, J. Alloys Compd., 2019, vol. 774, pp. 244–254.

  4. 4

    Herrmann, A., Tewelde, M., Kuhn, S., Tiegel, M., and Rüssel, C., The effect of glass composition on the luminescence properties of Sm3+ doped alumino silicate glasses, J. Non–Cryst. Solids, 2018, vol. 502, pp. 190–197.

  5. 5

    Rajaramakrishna, R., Knorr, B., Dierolf, V., Anavekar, R.V., and Jain, H., Spectroscopic properties of Sm3+-doped lanthanum borogermanate glass, J. Lumin., 2014, vol. 156, p. 192.

  6. 6

    Tick, P.A., Borrelli, N.F., Cornelius, L.K., and Newhouse, M.A., Transparent glass ceramics for 1300 nm amplifier applications, J. Appl. Phys., 1995, vol. 78, p. 6367.

  7. 7

    Tanabe, S., Hayashi, H., Hanada, T., and Onodera, N., Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals, Opt. Mater., 2002, vol. 19, p. 343.

  8. 8

    Khan, I., Rooh, G., Rajaramakrishna, R., Sirsittipokakun, N., Kim, H.J., Wongdeeying, C., and Kaewkh, J., Development of Eu3+ doped Li2O–BaO–GdF3–SiO2 oxyfluoride glass for efficient energy transfer from Gd3+ to Eu3+ in red emission solid state device application, J. Lumin., 2018, vol. 203, pp. 515–524.

  9. 9

    Meejitpaisan, P., Insiripong, S., Kedkaewa, C., Kim, H.J., and Kaewkhao, J., Radioluminescence and optical studies of gadolinium calcium phosphate oxyfluoride glasses doped with Sm3+, Radiat. Phys. Chem., 2017, vol. 137, pp. 62–67.

  10. 10

    Yuliantini, L., Hidayat, R., Djamal, M., Boonin, K., Yasaka, P., Kaewnuam, E., and Kaewkhao, J., Development of Sm3+ doped ZnO–Al2O3–BaO–B2O3 glasses for optical gain medium, J. Non–Cryst. Solids, 2018, vol. 482, pp. 86–92.

  11. 11

    Wantana, N., Kaewjaeng, S., Kothan, S., Kim, H.J., and Kaewkhao, J., Energy transfer from Gd3+ to Sm3+ and luminescence characteristics of CaO–Gd2O3–SiO2–B2O3 scintillating glasses, J. Lumin., 2017, vol. 181, pp. 382–386.

  12. 12

    Ibrahim, A.M., Hammad, A.H., Abdelgany, A.M., and Rabie, G.O., Mixed alkali effect and samarium ions effectiveness on the structural, optical and non-linear optical properties of borate glass, J. Non-Cryst. Solids, 2018, vol. 495, pp. 67–74.

  13. 13

    Basavapoornima, Ch. and Jayasankar, C.K., Spectroscopic and photoluminescence properties of Sm3+ ions in Pb–K–Al–Na phosphate glasses for efficient visible lasers, J. Lumin., 2014, vol. 153, p. 233.

  14. 14

    Carnall, W.T., Fields, P.R., and Rajnak, K., Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+, J. Chem. Phys., 1968, vol. 49, p. 4424.

  15. 15

    Praveena, R., Venkatramu, V., Babu, P., and Jayasankar, C.K., Fluorescence spectroscopy of Sm3+ ions in P2O5–PbO–Nb2O5 glasses, Phys. B (Amsterdam, Neth.), 2008, vol. 403, pp. 3527–3534.

  16. 16

    Venkatramu, V., Babu, P., Jayasankar, C.K., Troster, Th., Sievers, W., and Wortmann, G., Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses, Opt. Mater., 2007, vol. 29, pp. 1429–1439.

  17. 17

    Vijaya, R., Venkatramu, V., Babu, P., Jayasankar, C.K., Rodriguez-Mendoza, U.R., and Lavín, V., Spectroscopic properties of Sm3+ ions in phosphate and fluorophosphate glasses, J. Non-Cryst. Solids, 2013, vol. 365, pp. 85–92.

  18. 18

    Czaja, M., Bodyl, S., Gabrys, Pisarska, J., and Mazurakc, Z., Applications of Judd–Ofelt theory to praseodymium and samarium ions in phosphate glass, Opt. Mater., 2009, vol. 31, p. 1898.

  19. 19

    Sharma, Y.K., Surana, S.S.L., Dubedi, R.P., and Joshi, V., Spectroscopic and radiative properties of Sm3+ doped zinc fluoride borophosphate glasses, Mate-r. Sci. Eng. B, 2005, vol. 119, p. 131.

  20. 20

    Souza Filho, G., Mendes Filho, J., Melo, F.E.A., Custodio, M.C.C., Lebullenger, R., and Hernandes A.C., Optical properties of Sm3+ doped lead fluoroborate glasses, J. Phys. Chem. Solids, 2000, vol. 61, pp. 1535–1542.

  21. 21

    Lim, K.S., Vijaya, N., Kesavulu, C.R., and Jayasankar, C.K. Structural and luminescence properties of Sm3+ ions in zinc fluorophosphate glasses, Opt. Mater., 2013, vol. 35, p. 1557.

  22. 22

    Dominiak-Dzik, G., Sm3+-doped LiNbO3 crystal, optical properties and emission cross-sections, J. Alloys Compd., 2005, vol. 391, p. 26.

  23. 23

    Sundari, S.S., Marimuthu, K., Sivraman, M., and Babu, S.S., Composition dependent structural and optical properties of Sm3+-doped sodium borate and sodium fluoroborate glasses, J. Lumin., 2010, vol. 130, pp. 1313–1319.

  24. 24

    Xie, M., Liang, H., Huang, Y., Gao, Zh., and Tao, Y., Host absorption sensitizing and energy transfer to Eu3+ by Gd3+ in Ba6Gd2 – xNa2Eux(PO4)6F2, J. Solid State Chem., 2013, vol. 201, pp. 18–23.

  25. 25

    Sreedhar, V.B., Basavapoornima, Ch., and Jayasankar, C.K., Spectroscopic and fluorescence properties of Sm3+-doped zincfluorophosphate glasses, J. Rare Earths, 2014, vol. 32, p. 918.

  26. 26

    Srinivasa Rao, Ch. and Jayasankar, C.K., Spectroscopic and radiative properties of Sm3+-doped K–Mg–Al phosphate glasses, Opt. Commun., 2013, vol. 286, pp. 204–210.

  27. 27

    Rajaramakrishna, R., Lakshmikantha, R., Ayachit, N.H., and Anavekar, R.V., Optical properties and Judd–Ofelt analysis of Sm3+ doped lead zinc borate glass, Int. J. Pure Appl. Sci., 2013, vol. 02, no. 01, pp. 2250–2289.

  28. 28

    Selvaraju, K. and Marimuthu, K., Structural and spectroscopic studies on concentration dependent Sm3+ doped boro-tellurite glasses, J. Alloys Compd., 2013, vol. 553, pp. 273–281.

  29. 29

    Shoaib, M., Rooh, G., Rajaramakrishna, R., Chanthima, N., Kiwsakunkran, N., Kim, H.J., Kaewkhao, J., and Tuscharoen, S., Comparative study of Sm3+ ions doped phosphate based oxide and oxy-fluoride glasses for solid state lighting applications, J. Rare Earths, 2019, vol. 37, pp. 374–382.

  30. 30

    Wyszecki, G. and Stiles, W.S., Color Science: Concepts and Methods, Quantitative Data and Formulae, New York: Wiley, 1982.

  31. 31

    Schubert, E.F., Light-Emitting Diodes, Cambridge, UK: Cambridge Univ. Press, 2003.

  32. 32

    Erdem, T., Nizamoglu, S., Sun, X.W., and Demir, H.V., A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores, Opt. Express, 2010, vol. 18, pp. 340–347.

  33. 33

    McCamy, C.S., Correlated color temperature as an explicit function of chromaticity coordinates, J. Color Res. Appl., 1992, vol. 17, p. 142.

  34. 34

    Jamalaiah, B.C., Vijaya Kumar, M.V., and Rama Gopal, K., Fluorescence properties and energy transfer mechanism of Sm3+ ion in lead telluroborate glasses, Opt. Mater., 2011, vol. 33, p. 1643.

  35. 35

    Shamshad, L., Rooh, G., Kirdsiri, K., Srisittipokakun, N., Damdee, B., Kim, H.J., and Kaewkhao, J., Effect of alkaline earth oxides on the physical and spectroscopic properties of Dy3+-doped Li2O–B2O3 glasses for white emitting material application, Opt. Mater., 2017, vol. 64, pp. 268–275.

  36. 36

    Ravi, O., Reddy, M., Monoj, C.L., and Deva Prasad Raju, B., Structural and optical studies of Sm3+ ions doped niobium borotellurite glasses, J. Mol. Struct., 2012, vol. 1029, pp. 53–59.

  37. 37

    Shoaib, M., Rooh, G., Rajaramakrishna, R., Chanthima, N., Kim, H.J., Tuscharoen, S., and Kaewkhao, J., Physical and luminescence properties of samarium doped oxide and oxyfluoride phosphate glasses, Mater. Chem. Phys., 2019, vol. 229, pp. 514–522.

  38. 38

    Kirdsiri, K., Rajaramakrishna, R., Damdee, B., Kim, H.J., Kaewjaeng, S., Kothan, S., and Kaewkhao, J., Sm3+ doped lithium borate glasses with different modifiers (M = Mg/Ca/Sr/Ba) as a orange light emitting phosphor for WLED’s, J. Alloys Compd., 2018, vol. 749, pp. 197–204.

  39. 39

    Sasikala, T., Rama Moorthy, L., and Mohan Babu, A., Optical and luminescent properties of Sm3+ doped tellurite glasses, Spectrochim. Acta, Part A, 2013, vol. 104, p. 445.

  40. 40

    Jamalaiah, B.C., Suresh Kumar, J., Mohan Babu, A., Suhasini, T., and Rama Moorthy, L., Photoluminescence properties of Sm3+ in LBTAF glasses, J. Lumin., 2009, vol. 29, p. 363.

Download references


The author(s) thank Center of Excellence in Glass Technology and Material Science (CEGM), Nakhon Pathom Rajabhat University Thailand for funding this project. J. Kaewkhao would like to thank Nakhon Pathom Rajabhat University and National Research Council of Thailand for supporting this research (Project number GB_62_12 and GB_62_14).

Author information

Correspondence to I. Khan or N. Sirsittipokakun.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Rooh, G., Rajaramakrishna, R. et al. Spectroscopy Study of Sm3+ Doped Fluorosilicate Glasses for Orange Emission Solid-State Device Application. Glass Phys Chem 45, 447–458 (2019).

Download citation


  • oxyfluoride
  • samarium ions
  • Judd–Ofelt analysis
  • radiative properties