Glass Physics and Chemistry

, Volume 44, Issue 5, pp 474–479 | Cite as

Alteration of the Acid-Base Properties of the Oxidized Surface of Disperse Aluminum during the Adsorption of Ammonium Compounds and the Antifriction Effect

  • A. G. SyrkovEmail author
  • M. M. Sychev
  • M. O. Silivanov
  • N. N. Rozhkova


The number of active centers of disperse aluminum powder is determined by the spectrophotometric method using the Hammett indicators in the range of pKa values of 0.3 to 14.2; alteration of the distribution of the donor-acceptor sites on the surface as a result of the adsorption of quaternary ammonium compounds (QACs) from the gas phase is studied. The curves of the distribution of adsorption sites of aluminum-based powders are built depending on the ionization constant pKa of the indicators. A sharp decrease in the number of active sites in the Lewis acid sites region is detected for Al/(A + T) sample, where alkamon (A) and triamon (T) are jointly adsorbed. The number of sites is halved at pKa =–0.3, 5, and 9.5. We reveal that the antifriction effect of a lubricant is enhanced as the acidity of the surface of the powder with the adsorbed quaternary ammonium compounds is decreased.


disperse aluminum acid-base properties adsorption of alkamon and triamon indicator method antifriction effect in lubricants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tanabe, K., Solid Acids and Bases, New York, London: Academic, 1970. Moscow: Mir, 1973.Google Scholar
  2. 2.
    Sychev, M.M., Minakova, T.S., Slizhov, Yu.G., and Shilova, O.A., Kislotno-osnovnye kharakteristiki poverkhnosti tverdykh tel i upravlenie svoistvami materialov i kompozitov (Acid-Base Characteristics of Solid Surfaces and Control of Material and Composite Properties), St. Petersburg: Khimizdat, 2016.Google Scholar
  3. 3.
    Nechiporenko, A.P., Donorno-aktseptornye svoistva poverkhnosti tverdofaznykh sistem. Indikatornyi metod (Donor–Acceptor Properties of the Surface of Solid-Phase Systems. Indicator Method), St. Petersburg: Lan’, 2017.Google Scholar
  4. 4.
    Finlayson, M.F. and Shah, B.A., The influence of surface acidity and basicity on adhesion of poly(ethyleneco-acrylic acid) to aluminum, J. Adhes. Sci. Technol., 2012, vol. 4, no. 1, pp. 431–439.CrossRefGoogle Scholar
  5. 5.
    Beloglazov, I.N. and Syrkov, A.G., Khimiko-fizicheskie osnovy i metody polucheniya poverkhnostno-nanostrukturirovannykh metallov (Chemical-Physical Principles and Methods of Obtaining Surface-Nanostructured Metals), St. Petersburg: SPb. Gos. Univ., 2011.Google Scholar
  6. 6.
    Syrkov, A.G., Synergetic improvement of aluminum reactivity in the presence on the surface of quaternary ammonium compounds, Russ. J. Gen. Chem., 2013, vol. 83, no. 8, pp. 1621–1622.CrossRefGoogle Scholar
  7. 7.
    Syrkov, A.G., Smart Nanoobjects. From Laboratory to Industry, Levine, K., Ed., New York: Nova Science, 2013.Google Scholar
  8. 8.
    Bystrov, D.S., Syrkov, A.G., Pantyushin, I.V., and Vakhreneva, T.G., Antifrictional properties of industrial oil with additives of nanostructured metals, Khim. Fiz. Mezosk., 2009, vol. 11, no. 4, pp. 462–466.Google Scholar
  9. 9.
    Poverkhnostnye yavleniya i poverkhnostno-aktivnye veshchestva. Spravochnik (Surface Phenomena and Surface Active Substances), Abramzon, A.A. and Shchukin, E.D., Eds., Leningrad: Khimiya, 1984.Google Scholar
  10. 10.
    Syrkov, A.G., Synergetic change of tribochemical properties of copper in the presence of quaternary ammonium compounds at the surface, Russ. J. Gen. Chem., 2015, vol. 85, no. 6, pp. 1538–1539.CrossRefGoogle Scholar
  11. 11.
    Taraban, V.V., Syrkov, A.G., Silivanov, M.O., and Nazarova, E.A., Tribochemical properties of the heterogeneous systems containing the surface-modified disperse aluminium, Khim. Fiz. Mezosk., 2015, vol. 17, no. 4, pp. 557–564.Google Scholar
  12. 12.
    Nechiporenko, A.P., Burenina, T.A., and Kol’tsov, S.I., Indicator method for studying the surface acidity of solids, Zh. Obshch. Khim., 1985, vol. 55, no. 9, pp. 1907–1912.Google Scholar
  13. 13.
    Zakharova, N.V., Sychev, M.M., Korsakov, V.G., and Myakin, S.V., Evolution of donor–acceptor centers on the surface of BaTiO3–CaSnO3 ferroelectric materials in the cousre of their dispersion, Kondens. Sredy Mezhfaz. Granitsy, 2011, vol. 13, no. 1, pp. 56–62.Google Scholar
  14. 14.
    Alyuminii. Metallovedenie, obrabotka i primenenie alyuminievykh splavov. Spravochnik (Aluminium. Material Science, Processing and Application of Aluminium Alloys, The Handbook), Moscow: Metallurgiya, 1972.Google Scholar
  15. 15.
    Dedkov, G.V., Nanotribology: Experimental facts and theoretical models, Phys. Usp., 2000, vol. 43, no. 6, pp. 541–572.CrossRefGoogle Scholar
  16. 16.
    Sorochkina, E.A., Smotraev, R.V., Kalashnikov, Yu.V., and Gruzdeva, E.V., Acid-base properties of the surface of spherically granulated sorbents based on hydrated zirconium and aluminum oxides, Vopr. Khim. Khim. Tekhnol., 2013, no. 6, pp. 102–104.Google Scholar
  17. 17.
    Sitnikov, P.A., Ryabkov, Yu.I., Ryazanov, M.A., Belykh, A.G., Vaseneva, I.N., Fedoseev, M.S., and Tereshatov, V.V., Effect of acid-base properties of the surface of aluminum oxide on the reactivity with epoxy compounds, Izv. Komi Nauch. Tsentra UrO RAN, Khim. Nauki, 2013, no. 3, pp. 19–26.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. G. Syrkov
    • 1
    Email author
  • M. M. Sychev
    • 2
    • 3
  • M. O. Silivanov
    • 1
  • N. N. Rozhkova
    • 4
  1. 1.St. Petersburg Mining UniversitySt. PetersburgRussia
  2. 2.St. Petersburg State Technological Institute (Technical University)St. PetersburgRussia
  3. 3.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Institute of Geology, Karelian Research CenterRussian Academy of SciencesPetrozavodskRussia

Personalised recommendations