Advertisement

Glass Physics and Chemistry

, Volume 44, Issue 5, pp 375–380 | Cite as

Cluster Self-Organization of Intermetallic Systems: Cs6 and Cs4 Metal Clusters and Cs11O3 Metal–Oxygen Cluster for the Self-Assembly of the (Cs4)(Cs6)(Cs11O3) Crystal Structure

  • V. Ya. Shevchenko
  • V. A. Blatov
  • G. D. Ilyushin
Article
  • 15 Downloads

Abstract

A geometric and topological analysis of the Cs21O3 metal oxide with the minimal known oxygen content, which is formed from an oxygen-containing melt of metallic Cs, is performed. To identify clusters that are precursors of the crystal structures, special algorithms (ToposPro software package) for decomposing structural graphs into cluster substructures are used. The following precursor clusters involved in the self-assembly of the crystal structures are determined: Cs11O3 three-octahedral clusters; Cs6 octahedral clusters; and Cs4 tetrahedral clusters. The symmetry and topological code of the processes of self-assembly of crystal structures from precursor clusters is reconstructed in the following form: primary chain → microlayer → microframework.

Keywords

self-assembly of crystal structures Cs11O3, Cs6, and Cs4 clusters (Cs4)(Cs6)(Cs11O3) structural type of Cs21O3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simon, A., Metallreichstes Caesiumoxid Cs7O, Zeitschr. Anorg. Allgem. Chem., 1976, vol. 422, pp. 208–218.CrossRefGoogle Scholar
  2. 2.
    Deiseroth, H.J. and Simon, A., Kristallisationsvorgange bei metallreichen rubidiumoxiden, Zeitschr. Naturforsch., B, 1978, vol. 33, pp. 714–722.CrossRefGoogle Scholar
  3. 3.
    Simon, A. and Westerbeck, E., Das “komplexe metall” Cs11O3, Zeitschr. Anorg. Allgem. Chem., 1977, vol. 428, pp. 187–198.CrossRefGoogle Scholar
  4. 4.
    Simon, A., Deiseroth, H.J., and Westerbeck, E., Untersuchungen zum Aufbau von Tetracaesiumoxid, Zeitschr. Anorg. Allgem. Chem., 1976, vol. 423, pp. 203–211.CrossRefGoogle Scholar
  5. 5.
    Deiseroth, H.J. and Simon, A., Struktur und Bildung von RbCs11O3, Zeitschr. Anorgan. Allgem. Chem., 1980, vol. 463, pp. 14–26.CrossRefGoogle Scholar
  6. 6.
    Simon, A., Braemer, W., and Deiseroth, H.J., Structural separation of rubidium and cesium in an alkali metal suboxide, Inorg. Chem., 1978, vol. 17, pp. 875–879.CrossRefGoogle Scholar
  7. 7.
    Deiseroth, H.J. and Simon, A., Kristallisationsvorgaenge bei metallreichen rubidiumoxiden, Zeitschr. Naturforsch, B: Anorg. Chem., Org. Chem., 1978, vol. 33, pp. 714–722.CrossRefGoogle Scholar
  8. 8.
    Simon, A., Das “komplexe metall” Rb9O2, Zeitschr. Anorg. Allgem. Chem., 1977, vol. 431, pp. 5–16.CrossRefGoogle Scholar
  9. 9.
    Inorganic Crystal Structure Database (ICSD), Germany: Fachinformationszentrum Karlsruhe, USA: Natl. Inst. Standard Technol., NIST.Google Scholar
  10. 10.
    Villars, P. and Cenzual, K., Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC), Materials Park, OH: ASM Int.Google Scholar
  11. 11.
    Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., The symmetric and topological code of the cluster selfassembly of the icosahedral structure of (Rb13)(Rb2O)3 (Fm-3c, cF184) metal oxide, Glass Phys. Chem., 2018, vol. 44, no. 2, pp. 55–61.CrossRefGoogle Scholar
  12. 12.
    Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des., 2014, vol. 14, no. 7, pp. 3576–3585. https://doi.org/topospro.com/. CrossRefGoogle Scholar
  13. 13.
    Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Intermetallic compounds of the nacd2 family perceived as assemblies of nanoclusters, Struct. Chem., 2009, vol. 20, no. 6, pp. 975–982.CrossRefGoogle Scholar
  14. 14.
    Blatov, V.A., Ilyushin, G.D., and Proserpio, D.M., Nanocluster model of intermetallic compounds with giant unit cells: β, β'-Mg2Al3 polymorphs, Inorg. Chem., 2010, vol. 49, no. 4, pp. 1811–1818.CrossRefGoogle Scholar
  15. 15.
    Pankova, A.A., Ilyushin, G.D., and Blatov, V.A., Nanoclusters based on pentagondodecahedra with shells in the form of D32, D42, and D50 deltahedra in crystal structures of intermetallic compounds, Crystallogr. Rep., 2012, vol. 57, no. 1, pp. 1–9.CrossRefGoogle Scholar
  16. 16.
    Pankova, A.A., Blatov, V.A., Ilyushin, G.D., and Proserpio, D.M., γ-Brass polyhedral core in intermetallics: the nanocluster model, Inorg. Chem., 2013, vol. 52, no. 22, pp. 13094–13107.CrossRefGoogle Scholar
  17. 17.
    Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., New types of two-layer nanoclusters with an icosahedral core, Glass Phys. Chem., 2013, vol. 39, no. 5, pp. 229–234.CrossRefGoogle Scholar
  18. 18.
    Pankova, A.A., Akhmetshina, T.G., Blatov, V.A., and Proserpio, D.M., A collection of topological types of nanoclusters and its application to icosahedra-based intermetallics, Inorg. Chem., 2015, vol. 54, no. 13, pp. 6616–6630.CrossRefGoogle Scholar
  19. 19.
    Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Modeling of self-organization processes in crystalforming systems: Symmetry and topological codes of cluster self-assembly of a 2D layered icosahedral structure of Sc18B238 (Pbam, oP514), Glass Phys. Chem., 2016, vol. 42, no. 3, pp. 221–229.CrossRefGoogle Scholar
  20. 20.
    Ilyushin, G.D., Modeling of the self-organization processes in crystal-forming systems. Tetrahedral metal clusters and the self-assembly of crystal structures of intermetallic compounds, Crystallogr. Rep., 2017, vol. 62, no. 5, pp. 670–682.CrossRefGoogle Scholar
  21. 21.
    Ilyushin, G.D., Modelirovanie protsessov samoorganizatsii v kristalloobrazuyushchikh sistemakh (Modeling Self-Organization Processes in Crystal-Forming Systems), Moscow: Editorial URSS, 2003.Google Scholar
  22. 22.
    Ilyushin, G.D. and Dem’yanets, L.N., Model of matrix assembly of crystal structures, in Fizika kristallizatsii (Physics of Crystallization), Moscow: Fizmatlit, 2002, p.82.Google Scholar
  23. 23.
    Ilyushin, G.D., Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure, Struct. Chem., 2012, vol. 20, no. 6, pp. 975–1043.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. Ya. Shevchenko
    • 1
  • V. A. Blatov
    • 2
  • G. D. Ilyushin
    • 2
    • 3
  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.International Research Center for Theoretical Materials ScienceSamara State Technical UniversitySamaraRussia
  3. 3.Federal Research Center Crystallography and PhotonicsMoscowRussia

Personalised recommendations