Glass Physics and Chemistry

, Volume 44, Issue 5, pp 440–449 | Cite as

Sol-Gel Synthesis, Thermal Behavior of Nanopowders and Chemical Stability of La1 – xHoxPO4 Ceramic Matrices

  • L. P. MezentsevaEmail author
  • A. V. Osipov
  • V. L. Ugolkov
  • A. A. Akatov
  • V. A. Doilnitsyn
  • T. P. Maslennikova
  • A. V. Yakovlev


Nanosized powders of orthophosphates in the LaPO4–HoPO4–H2O system have been synthesized to determine the mutual solubility of LaPO4 · nH2O and HoPO4 · nH2O initial components and to obtain ceramic matrices by sintering them. Formation of hexagonal, monoclinic or tetragonal solid solutions was revealed, and their limits and thermal stability were determined. A series of limited hexagonal LaPO4 · nH2O-based solid solutions was observed within the 0 ≤ x ≤ 0.6 concentration range up to 600°C. Further they transformed to monoclinic LaPO4-based form within the 0 ≤ x ≤ 0.3 concentration range. Solubility of LaPO4 · nH2O and LaPO4 in tetragonal HoPO4nH2O) is lower (≤10 mol %). Specific surface area of La1–xHoxPO4 · nH2O powders was in the range of 90.5–165.0 m2/g depending on x. Leaching rate of La3+ and Ho3+ from La1–xHoxPO4 matrices in nitric acid solution (pH 1–2) was determined to be 10–5–10–2 g/(cm2 day) for both ions.


sol-gel La1 – xHoxPO4 · nH2O nanopowders ceramic matrices thermal and chemical stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Picot, V., Deschanels, X., Peuget, S., Glorieux, B., Seydoux-Guillaume, A.M., and Wirth, R., Ion beam radiation effects in monazite, J. Nucl. Mater., 2008, vol. 381, no. 3, pp. 290–296.CrossRefGoogle Scholar
  2. 2.
    Schlenz, H., Heuser, J., Neumann, A., Schmitz, S., and Bosbach, D., Monazite as a suitable actinide waste form, Z. Kristallogr., 2013, vol. 228, no. 3, pp. 113–123.CrossRefGoogle Scholar
  3. 3.
    Mezentseva, L.P., Osipov, A.V., Akatov, A.A., Doil’nitsin, V.A., Ugolkov, V.L., Popova, V.F., Maslennikova, T.P., and Drozdova, I.A., Chemical and thermal stability of phosphate ceramic matrices, Glass Phys. Chem., 2017, vol. 43, no. 1, pp. 83–90.CrossRefGoogle Scholar
  4. 4.
    Ugolkov, V.L., Mezentseva, L.P., Osipov, A.V., Popova, V.F., Maslennikova, T.P., Akatov, A.A., and Doil’nitsyn, V.A., Synthesis of nanopowders and physicochemical properties of ceramic matrices of the LaPO4–YPO4–(H2O) and LaPO4–HoPO4–(H2O) systems, Russ. J. Appl. Chem., 2017, vol. 90, no. 1, pp. 28–33.CrossRefGoogle Scholar
  5. 5.
    ICDD-PDF No. 46–1439 (LaPO4 · 0.5H2O); ICDDPDF No.35-731 (LaPO4); ICDD-PDF No. 20–476 (HoPO4 · 3H2O); ICDD-PDF No. 26–746 (HoPO4).Google Scholar
  6. 6.
    Zheng, Q., Wang, X., Tian, J., Kang, R., and Yin, Y., Synthesis and characterization of LaPO4 powder heat treated at various temperatures, Mater. Chem. Phys., 2010, vol. 122, no. 1, pp. 49–52.CrossRefGoogle Scholar
  7. 7.
    Mezentseva, L., Osipov, A., Ugolkov, V., Kruchinina, I., Popova, V., Yakovlev, A., and Maslennikova, T., Solid solutions and thermal transformations in the nanosized LaPO4–YPO4–H2O and LaPO4–LuPO4–H2O systems, J. Ceram. Sci. Tech., 2014, vol. 5, no. 3, pp. 237–244.Google Scholar
  8. 8.
    Mezentseva, L.P., Kruchinina, I.Yu., Osipov, A.V., Ugolkov, V.L., Popova, V.F., and Kuchaeva, S.K., Physical-chemical properties of nanopowders and ceramic samples of REE orthophosphates, Glass Phys. Chem., 2017, vol. 43, no. 1, pp. 98–105.CrossRefGoogle Scholar
  9. 9.
    Anfimova, T., Li, Q., Jensen, J.O., and Bjerrum, N.J., Thermal stability and proton conductivity of rare earth orthophosphate hydrates, Int. J. Electrochem. Sci., 2014, vol. 9, no. 5, pp. 2285–2300.Google Scholar
  10. 10.
    Mezentseva, L.P., Kruchinina, I.Yu., Osipov, A.V., Ugolkov, V.L., Popova, V.F., and Lapenok, A.Yu., The influence of the particularities of synthesis on the physicochemical properties of nanosized powders and ceramic samples of REE orthophosphates, Glass Phys. Chem., 2015, vol. 41, no. 6, pp. 668–671.CrossRefGoogle Scholar
  11. 11.
    Wang, R., Pan, W., Chen, J., Fang, M., Cao, Z., and Luo, Y., Synthesis and sintering of LaPO4 powder and its application, Mater. Chem. Phys., 2003, vol. 79, no. 1, pp. 30–36.CrossRefGoogle Scholar
  12. 12.
    Hay, R.S., Boakye, E.E., and Mogilevsky, P., Transformation plasticity in TbPO4 and (Gd,Dy)PO4 orthophosphates during indentation of polycrystalline specimens, J. Eur. Ceram. Soc., 2014, vol. 34, no. 3, pp. 773–781.CrossRefGoogle Scholar
  13. 13.
    Min, W., Miyahara, D., Yokoi, K., Yamaguchi, T., Daimon, K., Hikichi, Y., Matsubara, T., and Ota, T., Thermal and mechanical properties of sintered LaPO4–Al2O3 composites, Mater. Res. Bull., 2001, vol. 36, nos. 5–6, pp. 939–945.CrossRefGoogle Scholar
  14. 14.
    Wang, R., Pan, W., Chen, J., Jiang, M., Luo, Y., and Fang, M., Properties and microstructure of machinable Al2O3/LaPO4 ceramic composites, Ceram. Int., 2003, vol. 29, no. 1, pp. 19–25.CrossRefGoogle Scholar
  15. 15.
    Kuo, D.H. and Kriven, W.M., Characterization of yttrium phosphate and yttrium phosphate/yttrium aluminate laminate, J. Am. Ceram. Soc., 1995, vol. 78, no. 11, pp. 3121–3124.CrossRefGoogle Scholar
  16. 16.
    Glorieux, B., Matecki, M., Fayon, F., Coutures, J.P., Palau, S., Douy, A., and Peraudeau, G., Study of lanthanum orthophosphates polymorphism, in view of actinide conditioning, J. Nucl. Mater., 2004, vol. 326, nos. 2–3, pp. 156–162.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. P. Mezentseva
    • 1
    Email author
  • A. V. Osipov
    • 1
  • V. L. Ugolkov
    • 1
  • A. A. Akatov
    • 2
  • V. A. Doilnitsyn
    • 2
  • T. P. Maslennikova
    • 1
  • A. V. Yakovlev
    • 1
  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Saint-Petersburg State Institute of Technology (Technical University)St. PetersburgRussia

Personalised recommendations