Glass Physics and Chemistry

, Volume 44, Issue 5, pp 381–387 | Cite as

Properties of Bismuth-Containing High-Silica Glass Depending on the Bismuth Concentration and Heat Treatment. I. Spectral-Optical Properties

  • M. A. GirsovaEmail author
  • G. F. Golovina
  • I. N. Anfimova
  • L. N. Kurilenko


Bismuth-containing high-silica glass is synthesized by impregnating porous glass matrices in 0.01–0.5 M aqueous solutions of bismuth nitrate with the subsequent heat treatment at a temperature of 50–875°C. The dependences of the spectral-optical properties of the synthesized glass on the concentration of the doped bismuth (0.02–1.17 wt % Bi2O3) and heat treatment temperature are studied. It is found using the method of optical spectroscopy that bismuth is present in glass in different oxidation states—Bi3+, Bi2+, and \(\rm{Bi_5^{3+}}\) clusters. Near infrared spectroscopy in the 7500–4000 cm–1 frequency range reveals that an increase in the temperature results in a gradual decrease in the intensity of the absorption bands due to the vibration of hydroxyl groups and water molecules adsorbed on the surface. The glasses (T ~ 50 and 400°C) exhibit bands at 4445–4443, 4433, and 4417–4415 cm–1, which correspond to the absorption of Bi+ ions.


bismuth-containing high-silica glass optical spectroscopy near infrared spectroscopy energy dispersive spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Firstov, S.V., Ryumkin, K.E., Khopin, V.F., Alyshev, S.V., Firstova, E.G., Mel’kumov, M.A., Gur’yanov, A.N., and Dianov, E.M., Anti-Stokes luminescence in bismuth-doped aluminoand phosphosilicate fibres under two-step IR excitation, Quantum Electron., 2016, vol. 46, no. 7, pp. 612–616.CrossRefGoogle Scholar
  2. 2.
    Vtyurina, D.N., Romanov, A.N., Zaramenskikh, K.S., Vasil’eva, M.N., Fattakhova, Z.T., Trusov, L.A., Loiko, P.A., and Korchak, V.N., IR luminescence of bismuth-containing centers in materials prepared by impregnation and thermal treatment of porous glasses, Russ. J. Phys. Chem. B, 2016, vol. 10, no. 2, pp. 211–214.CrossRefGoogle Scholar
  3. 3.
    Firstov, S.V., Girsova, M.A., Dianov, E.M., and Antropova, T.V., Luminescent properties of thermoinduced active centers in quartz-like glass activated by bismuth, Glass Phys. Chem., 2014, vol. 40, no. 5, pp. 521–525.CrossRefGoogle Scholar
  4. 4.
    Girsova, M.A., Synthesis, structure and spectral-optical properties of composite materials based on silicate porous glasses containing silver halides or bismuth oxides, Cand. Sci. (Chem.) Dissertation, St. Petersburg, 2015.Google Scholar
  5. 5.
    Marzouk, M.A. and ElBatal, F.H., UV-visible and infrared absorption spectra of Bi2O3 in lithium phosphate glasses and effect of gamma irradiation, Appl. Phys. A, 2014, vol. 115, no. 3, pp. 903–912. doi 10.1007/s00339-013-7887-9CrossRefGoogle Scholar
  6. 6.
    Khonthon, S., Morimoto, S., Arai, Y., and Ohishi, Y., Redox equilibrium and NIR luminescence of Bi2O3-containing glasses, Opt. Mater., 2009, vol. 31, no. 8, pp. 1262–1268.CrossRefGoogle Scholar
  7. 7.
    Hashimoto, T., Shimoda, Y., Nasu, H., and Ishihara, A., ZnO-Bi2O3-B2O3 glasses as molding glasses with high refractive indices and low coloration codes, J. Am. Ceram. Soc., 2011, vol. 94, no. 7, pp. 2061–2066. doi 10.1111/j.1551-2916.2010.04383.xCrossRefGoogle Scholar
  8. 8.
    Antropova, T.V., Girsova, M.A., Anfimova, I.N., Golovina, G.F., Kurilenko, L.N., and Firstov, S.V., Production method of luminescent bismuth-containing quartz-like material based on high-silica porous glass, RF Patent No. 2605711, Byull. Izobret., 2016, no.36.Google Scholar
  9. 9.
    Girsova, M.A., Firstov, S.V., and Antropova, T.V., Structural and optical properties of the bismuth-containing quartz-like glasses, J. Phys.: Conf. Ser., 2014, vol. 541, p. 012022. doi 10.1088/1742-6596/541/1/012022Google Scholar
  10. 10.
    Girsova, M.A., Firstov, S.V., Anfimova, I.N., Golovina, G.F., Kurilenko, L.N., Kostyreva, T.G., Polyakova, I.G., and Antropova, T.V., High-silica glasses doped with bismuth, Fiz. Khim. Stekla, 2012, vol. 38, no. 6, pp. 861–863.Google Scholar
  11. 11.
    Girsova, M.A., Golovina, G.F., Kurilenko, L.N., Antropova, T.V. Synthesis and study of bismuth-containing high-silica glass by the IR spectroscopy method, Glass Phys. Chem., 2015, vol. 41, no 1, pp. 93–97.CrossRefGoogle Scholar
  12. 12.
    Zhou, S., Jiang, N., Zhu, B., Yang, H., Ye, S., Lakshminarayana, G., Hao, J., and Qiu, J., Multifunctional bismuth-doped nanoporous silica glass: from bluegreen, orange, red, and white light sources to ultrabroadband infrared amplifiers, Adv. Funct. Mater., 2008, vol. 18, no. 9, pp. 1407–1413.CrossRefGoogle Scholar
  13. 13.
    Fan, X., Su, L., Ren, G., Jiang, X., Xing, H., Hu, J., Tang, H., Li, H., Zheng, L., Qian, X., and Feng, H., Influence of thermal treatment on the near-infrared broadband luminescence of Bi:CsI crystals, Opt. Mater. Express, 2013, vol. 3, no. 3, pp. 400–406.CrossRefGoogle Scholar
  14. 14.
    Romanov, A.N., Fattakhova, Z.T., Veber, A.A., Usovich, O.V., Haula, E.V., Korchak, V.N., Tsvetkov, V.B., Trusov, L.A., Kazin, P.E., and Sulimov, V.B., On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+ and cluster Bi5 3+ luminescence in AlCl3/ZnCl2/BiCl3 chloride glass, Opt. Express, 2012, vol. 20, no. 7, pp. 7212–7220.CrossRefGoogle Scholar
  15. 15.
    Hamstra, M.A., Folkerts, H.F., and Blasse, G., Red bismuth emission in alkaline-earth-metal sulfates, J. Mater. Chem., 1994, vol. 4, no. 8, pp. 1349–1350.CrossRefGoogle Scholar
  16. 16.
    Little, L.H., Infrared Spectra of Adsorbed Molecules, London: Academic, 1966.Google Scholar
  17. 17.
    Kiryutenko, V.M., Kiselev, A.V., Lygin, V.I., and Shchepalin, K.L., Study of the surface properties of porous glass by infrared spectroscopy, Kinet. Katal., 1974, vol. 15, no. 6, pp. 1584–1588.Google Scholar
  18. 18.
    Gavrilko, T., Gnatyuk, I., Puchkovska, G., Baran, J., Marchewka, M., and Morawska-Kowal, T., Application of NIR spectroscopic method to the study of porous glasses filled with liquid crystals, Opt. Appl., 2003, vol. 33, no. 1, pp. 23–32.Google Scholar
  19. 19.
    Schmidt, B.C., Effect of boron on the water speciation in (alumino)silicate melts and glasses, Geochim. Cosmochim. Acta, 2004, vol. 68, no. 24, pp. 5013–5025. doi 10.1016/j.gca.2004.06.036CrossRefGoogle Scholar
  20. 20.
    Zotov, N. and Keppler, H., The influence of water on the structure of hydrous sodium tetrasilicate glasses, Am. Mineralog., 1998, vol. 83, nos. 7–8, pp. 823–834.CrossRefGoogle Scholar
  21. 21.
    Bauer, U., Behrens, H., Reinsch, S., Morin, E.I., and Stebbins, J.F., Structural investigation of hydrous sodium borosilicate glasses, J. Non-Cryst. Solids, 2017, vol. 465, pp. 39–48.CrossRefGoogle Scholar
  22. 22.
    Davis, K.M., Agarwal, A., Tomozawa, M., and Hirao, K., Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass, J. Non-Cryst. Solids, 1996, vol. 203, pp. 27–36.CrossRefGoogle Scholar
  23. 23.
    Wu, C.-K., Nature of incorporated water in hydrated silicate glasses, J. Am. Ceram. Soc., 1980, vol. 63, nos. 7–8, pp. 453–457.CrossRefGoogle Scholar
  24. 24.
    Plotnichenko, V.G., Philippovskiy, D.V., Sokolov, V.O., Golovanov, V.F., Polyakova, G.V., Lisitsky, I.S., and Dianov, E.M., Infrared luminescence in bismuth-doped AgCl crystals, Opt. Lett., 2013, vol. 38, no. 16, pp. 2965–2968. CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. A. Girsova
    • 1
    Email author
  • G. F. Golovina
    • 1
  • I. N. Anfimova
    • 1
  • L. N. Kurilenko
    • 1
  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations