Advertisement

Glass Physics and Chemistry

, Volume 44, Issue 5, pp 480–485 | Cite as

Study of Effects Occurring on Formation of Fractal Microstructures in Layers of Polycarbonate, Polymethyl Methacrylate, Indium Tin Oxide, and Zinc Oxide

  • A. A. Bobkov
  • V. F. Borodzyulya
  • I. A. Lamkin
  • I. I. Mikhailov
  • V. A. Moshnikov
  • A. V. Solomonov
  • S. A. Tarasov
Article
  • 3 Downloads

Abstract

The effects occurring on the formation of fractal microstructures in conductive layers of oxide compounds are investigated. It is demonstrated that during a high-density current flow in the layers of indium tin oxides (ITOs) placed on glass substrate a dynamic system is formed with the subsequent formation of a current channel on the layer’s surface, which determines the path of the development of fractal microstructures. Fractal microstructures of varied shapes (spiral, sectoral, and radial) were formed. It is shown that application of an additional polymer thin film on the layers of oxide compounds visualizes the breakdown processes occurring within the structure. Magnified polymer imaging allows to estimate the quality of the layers in contact without high resolution optical equipment. The emergence of luminescence related to the relaxation of excited atoms is identified as the most crucial effect following the formation of fractal structures. This analytical signal is promising in terms of the analysis of the processes of the formation of fractal structures.

Keywords

fractal microstructures indium tin oxide (ITO) zinc oxide polycarbonate polymethyl methacrylate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rogers, J.A., Someya, T., and Huang, Y.G., Materials and mechanics for stretchable electronics, Science (Washington, DC, U. S.), 2010, vol. 327, pp. 1603–1607.CrossRefGoogle Scholar
  2. 2.
    Wagner, S. and Bauer, S., Materials for stretchable electronics, MRS Bull., 2012, vol. 37, pp. 207–217.CrossRefGoogle Scholar
  3. 3.
    Kim, D.H., Ghaffari, R., Lu, N.S., and Rogers, J.A., Ann. Rev. Biomed. Eng., 2012, vol. 14, pp. 113–128.CrossRefGoogle Scholar
  4. 4.
    Fan, J.A., Fractal design concepts for stretchable electronics, Nat. Commun., 2014, vol. 5, p. 3266.CrossRefGoogle Scholar
  5. 5.
    Tarasov, S.A and Borodzyulya, V.F., Formation of thinfilm fractal micro-and nanostructures by electric discharge method, Nauka Obrazov.: Tekhnol. Usp., 2016, pp. 84–92.Google Scholar
  6. 6.
    Thekkekara, L.V. and Gu, M., Bioinspired fractal electrodes for solar energy storages, Sci. Rep., 2017, vol. 7, p. 45585.CrossRefGoogle Scholar
  7. 7.
    Gracheva, I.E., Maksimov, A.I., and Moshnikov, V.A., Analysis of structural features of tin dioxide-based fractal nanocomposites by atomic-force microscopy and X-ray diffraction, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2009, vol. 3, no. 5, pp. 761–768.CrossRefGoogle Scholar
  8. 8.
    Goncharov, V.D., Sorokin, K.S., Yashkardin, R.V., and Fiskin, E.M., Method of calculating random electromagnetic pulse penetration through the conducting structures, in Proceedings of the 11th International Workshop on the Electromagnetic Compatibility of Integrated Circuits, 2017, pp. 239–241.Google Scholar
  9. 9.
    Tadtaev, P.O., Bobkov, A.A., Borodzyulya, V.F., Lamkin, I.A., Mihailov, I.I., Moshnikov, V.A., Permyakov, N.V., Solomonov, A.V., Sudar, N.T., and Tarasov, S.A., Thin-film fractal nanostructures formed by electrical breakdown, J. Phys.: Conf. Ser., 2017, vol. 929, p. 012048.Google Scholar
  10. 10.
    Gracheva, I.E., Moshnikov, V.A., Maraeva, E.V., Karpova, S.S., Alexandrova, O.A., Alekseyev, N.I., Kuznetsov, V.V., Semenov, K.N., Startseva, A.V., Sitnikov, A.V., Olchowik, G., and Olchowik, J.M., Nanostructured materials obtained under conditions of hierarchical self-assembly and modified by derivative forms of fullerenes, J. Non-Cryst. Solids, 2012, vol. 358, no. 2, pp. 433–439.CrossRefGoogle Scholar
  11. 11.
    Moshnikov, V.A., Gracheva, I.E., and An’chkov, M.G., Investigation of sol–gel derived nanomaterials with a hierarchical structure, Glass Phys. Chem., 2011, vol. 37, no. 5, pp. 485–495.CrossRefGoogle Scholar
  12. 12.
    Moshnikov, V.A., Atomno-silovaya mikroskopiya dlya issledovaniya nanostrukturirovannykh materialov i pribornykh struktur: Ucheb. posobie (Atomic Force Microscopy for the Study of Nanostructured Materials and Device Structures, The School-Book), St. Petersburg: SPbGETU LETI, 2014.Google Scholar
  13. 13.
    Ponomareva, A.A., Moshnikov, V.A., and Suchaneck, G., Evaluation of the fractal dimension of sol-gel deposited oxide films by means of the power spectral density, Glass Phys. Chem., 2014, vol. 40, no. 2, pp. 203–207.CrossRefGoogle Scholar
  14. 14.
    Sychev, M.M., Kislotno-osnovnye kharakteristiki poverkhnosti tverdykh tel i upravlenie svoistvami materialov i kompozitov (Acid-Base Characteristics of Solid Surfaces and Control of Material and Composite Properties), St. Petersburg: Khimizdat, 2016.Google Scholar
  15. 15.
    Nalimova, S.S., Myakin, S.V., and Moshnikov, V.A., Controlling surface functional composition and improving the gas-sensing properties of metal oxide sensors by electron beam processing, Glass Phys. Chem., 2016, vol. 42, no. 6, pp. 597–601.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Bobkov
    • 1
  • V. F. Borodzyulya
    • 2
  • I. A. Lamkin
    • 1
  • I. I. Mikhailov
    • 1
  • V. A. Moshnikov
    • 1
  • A. V. Solomonov
    • 2
  • S. A. Tarasov
    • 1
  1. 1.Ul’yanov (Lenin) St. Petersburg State Electrotechnical University LETISt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations