Glass Physics and Chemistry

, Volume 44, Issue 5, pp 455–463 | Cite as

Study of the Chemical Bond in Li2 – yFe1 – xMnxSiO4 (x = 0.0, 0.5, 1.0; y = 0.0, 2.0) by the Method of Computer Simulation

  • M. Yu. Arsent’ev
  • P. A. TikhonovEmail author
  • M. V. Kalinina


The electron structure of Li2MnSiO4 and Li2FeSiO4 in a layered orthorhombic crystal structure of Pmn21 is studied by the electron density functional method. Using the analysis of the density of crystal orbital Hamilton populations (COHPs), the features of chemical bond formation in these substances are studied. Anisotropy of the chemical bond of Mn with oxygen atoms is observed for Li2MnSiO4 with the complete extraction of lithium atoms from the structure. The formation of anisotropy of the chemical bond can indicate that Mn is trying to change the coordination and the beginning of the restructuring of the compound structure and its reduced stability.


electrochemical batteries silicates Li2MnSiO4 method of electron density functional theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andre, D., Kim, S.-J., Lamp, P., Lux, S.F., Maglia, F., Paschos, O., and Stiaszny, B., Future generations of cathode materials: An automotive industry perspective, J. Mater. Chem. A, 2015, vol. 3, pp. 6709–6732.CrossRefGoogle Scholar
  2. 2.
    Dronskowski, R. and Blöchl, P.E., Crystal orbital hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on densityfunctional calculations, J. Phys. Chem., 1993, vol. 97, pp. 8617–8624.CrossRefGoogle Scholar
  3. 3.
    Larsson, P., Ahuja, R., Liivat, A., and Thomas, J.O., Structural and electrochemical aspects of Mn substitution into Li2FeSiO4 from DFT calculations, Comput. Mater. Sci., 2010, vol. 47, pp. 678–684.CrossRefGoogle Scholar
  4. 4.
    Wang, W., Zhang, Y., Shen, C., and Chai, Y., Adsorption of CO molecules on doped graphene: A first-principles study, AIP Adv., 2016, vol. 6, p. 25317.CrossRefGoogle Scholar
  5. 5.
    Arsent’ev, M.Yu., Kalinina, M.V., Tikhonov, P.A., Morozova, L.V., Kovalenko, A.S., Koval’ko, N.Yu., Khlamov, I.I., and Shilova, O.A., Synthesis and study of sensor oxide nanofilms in a ZrO2–CeO2 system, Glass Phys. Chem., 2014, vol. 40, no. 3, pp. 362–366.CrossRefGoogle Scholar
  6. 6.
    Shapovalov, V.I., Lapshin, A.E., Komlev, A.E., Arsent’ev, M.Yu., and Komlev, A.A., Crystallization and thermochromism of annealed heterostructures containing titanium and tungsten oxide films, Tech. Phys., 2013, vol. 58, no. 9, pp. 1313–1322.CrossRefGoogle Scholar
  7. 7.
    Mousavi-Khoshdel, M., Targholi, E., and Momeni, M.J., First-principles calculation of quantum capacitance of codoped graphenes as supercapacitor electrodes, J. Phys. Chem. C, 2015, vol. 119, pp. 26290–26295.CrossRefGoogle Scholar
  8. 8.
    Shilova, O.A., Antipov, V.N., Tikhonov, P.A., Kruchinina, I.Yu., Arsent’ev, M.Yu., Panova, T.I., Morozova, L.V., Moskovskaya, V.V., Kalinina, M.V., and Tsvetkova, I.N., Ceramic nanocomposites based on oxides of transition metals for ionistors, Glass Phys. Chem., 2013, vol. 39, no. 5, pp. 570–578.CrossRefGoogle Scholar
  9. 9.
    Arsent’ev, M.Y., Tikhonov, P.A., Kalinina, M.V., Tsvetkova, I.N., and Shilova, O.A., Synthesis and physicochemical properties of electrode and electrolyte nanocomposites for supercapacitors, Fiz. Khim. Stekla, 2012, vol. 38, no. 5, pp. 653–664.Google Scholar
  10. 10.
    Moshnikov, V.A., Gracheva, I.E., Kuznezov, V.V., Maximov, A.I., Karpova, S.S., and Ponomareva, A.A., Hierarchical nanostructured semiconductor porous materials for gas sensors, J. Non. Cryst. Solids, 2010, vol. 356, pp. 2020–2025.CrossRefGoogle Scholar
  11. 11.
    Lenshin, A.S., Kashkarov, V.M., Seredin, P.V., Spivak, Y.M., and Moshnikov, V.A., XANES and IR spectroscopy study of the electronic structure and chemical composition of porous silicon on n-and p-type substrates, Semiconductors, 2011, vol. 45, pp. 1183–1188.CrossRefGoogle Scholar
  12. 12.
    Moshnikov, V.A., Gracheva, I.E., and An’chkov, M.G., Investigation of sol–gel derived nanomaterials with a hierarchical structure, Glass Phys. Chem., 2011, vol. 37, no. 5, pp. 485–495.CrossRefGoogle Scholar
  13. 13.
    Kalinina, M.V., Moshnikov, V.A., Tikhonov, P.A., Tomaev, V.V., and Drozdova, I.A., Electron microscopic investigation of the structure of gas-sensitive nanocomposites prepared by the hydropyrolytic method, Glass Phys. Chem., 2003, vol. 29, no. 3, pp. 322–327.CrossRefGoogle Scholar
  14. 14.
    Kalinina, M.V., Moshnikov, V.A., Tikhonov, P.A., Tomaev, V.V, and Mikhailichenko, S.V., Temperature dependence of the resistivity for metal-oxide semiconductors based on tin dioxide, Glass Phys. Chem., 2003, vol. 29, no. 4, pp. 422–427.CrossRefGoogle Scholar
  15. 15.
    Shevchenko, V.Ya., Institute of Sicilate Chemistry of RAS. Studies in the field of nanoworld and nanotechnology, Ross. Nanotekhnol., 2008, vol. 3, nos. 11–12, pp. 36–45.Google Scholar
  16. 16.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, pp. 3865–3868.CrossRefGoogle Scholar
  17. 17.
    Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P., and Sanchez-Portal, D., The SIESTA method for ab initio order-N materials simulation, J. Phys. Chem., 1993, vol. 97, pp. 8617–8624.CrossRefGoogle Scholar
  18. 18.
    Pack, J.D. and Monkhorst, H.J., Special points for brillouin zone integrations, Phys. Rev. B, 1977, vol. 16, pp. 1748–1749.CrossRefGoogle Scholar
  19. 19.
    Kokalj, A., Dominko, R., Mali, G., Meden, A., Gaberscek, M., and Jamnik, J., Beyond one-electron reaction in Li cathode materials: Designing Li2MnxFe1–xSiO4, Chem. Mater., 2007, vol. 19, pp. 3633–3640.CrossRefGoogle Scholar
  20. 20.
    Lee, H., Park, S.D., Moon, J., Lee, H., Cho, K., Cho, M., and Kim, S.Y., Origin of poor cyclability in Li2MnSiO4 from first-principles calculations: Layer exfoliation and unstable cycled structure, Chem. Mater., 2014, vol. 26, pp. 3896–3899.CrossRefGoogle Scholar
  21. 21.
    Li, L., Zhu, L., Xu, L.-H., Cheng, T.-M., Wang, W., Li, X., and Sui, Q.-T., Site-exchange of Li and M ions in silicate cathode materials Li2MSiO4 (M = Mn, Fe, Co and Ni): DFT calculations, J. Mater. Chem. A, 2014, vol. 2, pp. 4251–4255.CrossRefGoogle Scholar
  22. 22.
    Arroyo de Dompablo, M.E., Armand, M., Tarascon, J.M., and Amador, U., On-demand design of polyoxianionic cathode materials based on electronegativity correlations: an exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni), Electrochem. Commun., 2006, vol. 8, pp. 1292–1298.CrossRefGoogle Scholar
  23. 23.
    Chen, Q., Xiao, P., Pei, Y., Song, Y., Xu, C.-Y., Zhen, L., and Henkelman, G., Structural transformations in Li2MnSiO4: Evidence that a Li intercalation material can reversibly cycle through a disordered phase, J. Mater. Chem. A, 2017, vol. 5, pp. 16722–16731.CrossRefGoogle Scholar
  24. 24.
    Arsentev, M., Hammouri, M., Kovalko, N., and Kalinina, M., First principles study of the electrochemical properties of Mg-substituted Li2MnSiO4, Comput. Mater. Sci., 2017, vol. 140, pp. 181–188.CrossRefGoogle Scholar
  25. 25.
    Gong, Z.L., Li, Y.X., and Yang, Y., Synthesis and characterization of Li2MnxFe1–xSiO4 as a cathode material for lithium-ion batteries, Electrochem. Solid State, 2006, vol. 9, pp. A542–A544.CrossRefGoogle Scholar
  26. 26.
    Chung, Y., Yu, S., Song, M.S., Kim, S.-S., and Cho, W.I., Structural and electrochemical properties of Li2Mn0.5Fe0.5SiO4/C cathode nanocomposite, Bull. Korean Chem. Soc., 2011, vol. 32, pp. 4205–4209.CrossRefGoogle Scholar
  27. 27.
    Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., A, 1976, vol. 32, pp. 751–767.CrossRefGoogle Scholar
  28. 28.
    Zhu, L., Li, L., Cheng, T., and Xu, D., First principles study of the elastic properties of Li2MnSiO4–ySy, J. Mater. Chem. A, 2015, vol. 3, pp. 5449–5456.CrossRefGoogle Scholar
  29. 29.
    Brese, N.E. and O’Keeffe, M., Bond valence parameters for solids, Acta Crystallogr., B, 1991, vol. 47, pp. 192–197.CrossRefGoogle Scholar
  30. 30.
    Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., and Persson, K.A., Commentary: the materials project: a materials genome approach to accelerating materials innovation, APL Mater., 2013, vol. 1, p. 11002.CrossRefGoogle Scholar
  31. 31.
    Zhong, G., Li, Y., Yan, P., Liu, Z., Xie, M., and Lin, H., Structural, electronic, and electrochemical properties of cathode materials Li2MSiO4 (M = Mn, Fe, and Co): Density functional calculations, J. Phys. Chem. C, 2010, vol. 114, pp. 3693–3700.CrossRefGoogle Scholar
  32. 32.
    Wu, S.Q., Zhu, Z.Z., Yang, Y., and Hou, Z.F., Structural stabilities, electronic structures and lithium deintercalation in LixMSiO4 (M = Mn, Fe, Co, Ni): A GGA and GGA + U study, Comput. Mater. Sci., 2009, vol. 44, pp. 1243–1251.CrossRefGoogle Scholar
  33. 33.
    Wu, P., Wu, S.Q., Lv, X., Zhao, X., Ye, Z., Lin, Z., Wang, C.Z., and Ho, K.M., Fe-Si networks in Na2Fe-SiO4 cathode materials, Phys. Chem. Chem. Phys., 2016, vol. 18, pp. 23916–23922.CrossRefGoogle Scholar
  34. 34.
    Grinyaev, S.N., Anisotropy of the chemical bond and electronic structure in graphite-like and rhombohedral boron nitride, Zh. Strukt. Khim., 1997, vol. 38, no. 1, pp. 32–41.Google Scholar
  35. 35.
    Okotrub, A.V., Yudanov, N.F., Asanov, I.P., Vyalikh, D.V., and Bulusheva, L.G., Anisotropy of chemical bonding in semifluorinated graphite C2F revealed with angleresolved X-ray absorption spectroscopy, ACS Nano, 2013, vol. 7, pp. 65–74.CrossRefGoogle Scholar
  36. 36.
    Belharouak, I., Abouimrane, A., and Amine, K., Structural and electrochemical characterization of Li2MnSiO4 cathode material, J. Phys. Chem. C, 2009, vol. 113, pp. 20733–20737.CrossRefGoogle Scholar
  37. 37.
    Kuganathan, N. and Islam, M.S., Li2MnSiO4 lithium battery material: Atomic-scale study of defects, lithium mobility, and trivalent dopants, Chem. Mater., 2009, vol. 21, pp. 5196–5202.CrossRefGoogle Scholar
  38. 38.
    Momma, K. and Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 2011, vol. 44, pp. 1272–1276.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. Yu. Arsent’ev
    • 1
  • P. A. Tikhonov
    • 1
    Email author
  • M. V. Kalinina
    • 1
  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations