Geology of Ore Deposits

, Volume 61, Issue 5, pp 447–468 | Cite as

“Invisible” Gold in Synthetic and Natural Arsenopyrite Crystals, Vorontsovka Deposit, Northern Urals

  • E. V. KovalchukEmail author
  • B. R. Tagirov
  • I. V. Vikentyev
  • D. A. Chareev
  • E. E. Tyukova
  • M. S. Nikolsky
  • S. E. Borisovsky
  • N. S. Bortnikov


“Invisible” gold in hydrothermal ores is frequently scattered in the most abundant minerals of the Fe–As–S system. It is assumed that “invisible” gold does not incorporate into the mineral structure (nanoscale inclusions of the metal or its compounds) or is chemically bound (isomorphous substitution). The aim of this study is to determine the concentration range of “invisible” gold, species of its occurrence in arsenopyrite, and conditions facilitating the formation of gold-bearing arsenopyrite using synthetic crystals and natural samples from the Vorontsovka Carlin-type deposit in the Northern Urals. Arsenopyrite crystals have been synthesized using the ampoule method in a eutectic melt of alkali metal chlorides and Al at a stationary thermal gradient and 400–500°C at the cold ampoule end. The chemical composition of arsenopyrite has been measured by electron probe microanalysis. The chemical composition of synthesized arsenopyrite is, at %: 32.6–34.4 Fe, 30–36.5 As, and 29.4–36.0 As. The gold concentration ranges from below the detection limit (<45 ppm) to 3 wt %. The obtained chemical data for synthetic crystals are compared with theoretical trends calculated for various gold species. It has been established that the slope of the trends of the average arsenopyrite compositions is very close to that of the theoretical line of isomorphous substitution Au ↔ Fe. It allows the assumption that the isomorphous solid solution in which Au occupies the Fe site formed during experiment. In general, all our data on synthetic and natural arsenopyrite show a strong negative correlation between Au and Fe, which supports the formation of the solid solution with Au at the cation site. In addition, a weak positive correlation between Au and As is observed: the higher As concentration is characteristic of As-rich (As/S > 1 at %) arsenopyrite and is close to stoichiometry, whereas in the S-rich variety, the Au content is as low as 0.25 wt %. This dependence is not only within individual grains, but also at the deposit in general: later As-rich arsenopyrite formed at lower temperature and sulfur fugacity (T = 250–370°C, log f  S2 = –12 to –17) is enriched in Au compared to early arsenopyrite (T = 270–400°C, log f  S2 = –7 to –9). Comparison of our data with the literature shows that an increasing Au content with increasing As concentration and decreasing Fe content in arsenopyrite is a common feature of Carlin-type deposits. We believe that in contrast to the negative correlation between Au and Fe, the correlation between Au and As is not obvious and may be caused by external factors, different composition of hydrothermal fluids, and sulfur fugacity.


arsenopyrite EPMA speciation synthetic crystals Voronotsovka deposit Carlin type 



We thank E.E. Amplieva for invaluable comments and recommendations on the manuscript and V.Yu. Prokofiev for promoting discussion of the manuscript at the laboratory.


This study was supported by the Russian Science Foundation (project no. 17-17-01220, synthetic crystals) and base theme IGEM RAS AAAA-A18-11802150167-1 (natural minerals). Chemical analyses were performed at the Common Use Center IGEM-Analitika.


The authors declare that they have no conflict of interest.


  1. 1.
    Benzaazoua, M., Marion, P., Robaut, F., and Pinto, A., Gold-bearing arsenopyrite and pyrite in refractory ores: analytical refinements and new understanding of gold mineralogy, Mineral. Mag., 2007, vol. 71, pp. 123–142.CrossRefGoogle Scholar
  2. 2.
    Bobrov V.N. Vorontsovskii klad. Poiski i otkrytiya (Vorontsov Treasure. Search and Discovery), Karpinsk: Pechatnyi dom “Perspektiva”, 2013.Google Scholar
  3. 3.
    Boiron, M.-C., Cathelineau, M., and Trescases, J.-J., Conditions of gold-bearing arsenopyrite crystallization in the Villeranges Basin, Marche-Combrailles shear zone, France: a mineralogical and fluid inclusion study, Econ. Geol., 1989, vol. 84, pp. 1340–1362.CrossRefGoogle Scholar
  4. 4.
    Bortnikov, N.S., On reliability of arsenopyrite and arsenopyrite–sphalerite geothermometers, Geol. Rudn. Mestorozhd., 1993, no. 2, pp. 177–191.Google Scholar
  5. 5.
    Bortnikov, N.S., Genkin, A.D., and Chryssoulis, S., Deposition environment of gold-bearing arsenopyrite in mesothermal deposits, Current Research in Geology Applied to Ore Deposits, Granada: Granada Univ., 1993.Google Scholar
  6. 6.
    Cabri, L.J., Chryssoulis, S.L., de Villiers, J.P.R., Laflamme, J.H.G., and Buseck, P.R., The nature of “invisible” gold in arsenopyrite, Can. Mineral., 1989, vol. 27, pp. 353–362.Google Scholar
  7. 7.
    Cabri, L.J., Newville, M., Gordon, R.A., Daryl Crozier, E., Sutton, S.R., Mcmahon, G., and Jiang, D.T., Chemical speciation of gold in arsenopyrite, Can. Mineral., 2000, vol. 38, pp. 1265–1281.CrossRefGoogle Scholar
  8. 8.
    Cathelineau, M., Boiron, M.-C., Holliger, P., Marion, P., and Denis, M., Gold in arsenopyrites: crystal chemistry, location and state, physical and chemical conditions of deposition. in: the geology of gold deposits: the perspective in 1988, Econ. Geol. Monogr. Ser., Keays, R.R., Ramsay, W.R.H., and Groves, D.I, Eds., 1989, no. 6, pp. 328–341.Google Scholar
  9. 9.
    Cepedal, A., Fuertes-Fuente, M., Martin-Lizard, A., Gonzalez-Nistal, S., and Barrero, M., Gold-bearing As-rich pyrite and arsenopyrite from the El Valle gold deposit, Asturias, northwestern Spain, Can. Mineral., 2008, vol. 46, pp. 233–247.CrossRefGoogle Scholar
  10. 10.
    Chareev D.A., Volkova O.S., Geringer N.V., Koshelev A.V., Nekrasov A.N., Osadchii V.O., Osadchii E.G., and Filimonova, O.N., Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient, Crystal. Rept., 2016, vol.61. no. 4, pp. 652–662.Google Scholar
  11. 11.
    Cheremisin, A.A. and Zlotnik-Khotkevich, A.G., Vorontsovskoe gold-bearing deposit, Rudy Met., 1997, no. 1, pp. 59–70.Google Scholar
  12. 12.
    Cook, N.J. and Chryssoulis, S.L., Concentrations of “invisible” “gold” in the common sulfides, Can. Mineral., 1990, vol. 28, pp. 1–16.Google Scholar
  13. 13.
    Cook, N.J., Ciobanu, C.L., and Mao, J., Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang, and Hougou gold deposits, North China Craton (Hebei Province, China), Chem. Geol., 2009, vol. 264, pp. 101–121.CrossRefGoogle Scholar
  14. 14.
    Filimonova, O.N., Trigub, A.L., Tonkacheev, D.E., Nickolsky, M.S., Kvashnina, K.O., Chareev, D.A., Chaplygin, I.V., Kovalchuk, E.V., Lafuerza, S., and Tagirov, B.R., Substitution mechanisms in In, Au, and Cu-bearing sphalerites studied by X-ray absorption spectroscopy of synthetic and natural minerals, Mineral. Mag., 2019, vol. 83, no. 3, 682–691.CrossRefGoogle Scholar
  15. 15.
    Fleet, M.E. and Mumin, A.H., Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin trend gold deposits and laboratory synthesis, Am. Mineral., 1997, vol. 82, pp. 182–193.CrossRefGoogle Scholar
  16. 16.
    Fougerouse, D., Reddy, S.M., Saxey, D.W., Rickard, W.D.A., Riessen, A., and Micklethwaite, S., Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration: evidence from atom probe microscopy, Am. Mineral., 2016, vol. 101, pp. 1916 – 1919.CrossRefGoogle Scholar
  17. 17.
    Genkin, A.D., Bortnikov, N.S., Cabri, L.J., Wagner, F.E., Stanley, C.J., Safonov, O.G., McMahon, G., Friedl, J., Kerzin, A.L., and Gamyanin, G.N., A multidisciplinary study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia, Russian Federation, Econ. Geol., 1998, vol. 93, pp. 463–487.CrossRefGoogle Scholar
  18. 18.
    Goldfarb, R.J., Baker, T., Dube, B., Groves, D.I., Hart, C.J., and Gosselin, P., Distribution, character, and genesis of gold deposits in metamorphic terranes, Econ. Geol., 2005, vol. 100, pp. 407–450.Google Scholar
  19. 19.
    Johan, Z., Marcoux, E., and Bonnemaison, M., Arsenopyrite aurifere: mode de substitution de au dans la structure de feass, Comptes Rendus de l’Academie des Sciences, 1989, vol. 308. Ser. II, pp. 185–191.Google Scholar
  20. 20.
    Kojonen, K. and Johanson, B., Determination of refractory gold distribution by microanalysis, diagnostic leaching and image analysis, Mineral. Petrol., 1999, vol. 67, pp. 1–19.CrossRefGoogle Scholar
  21. 21.
    Kovalev, K.R., Kalinin, Yu.A., Naumov, E.A., Kolesnikova, M.K., and Korolyuk, V.N., Gold-bearing arsenopyrite in Eastern Kazakhstan gold–sulfide deposits, Russ. Geol. Geophys., 2011, vol. 52, no. 2, pp. 178–192.CrossRefGoogle Scholar
  22. 22.
    Kretschmer, U. and Scott, S.D., Phase relations involving arsenopyrite in the system Fe–As–S and their application, Can. Mineral., 1976, vol. 14, pp. 364–386.Google Scholar
  23. 23.
    Large, R.R., Maslennikov, V.V., Robert, F., Danyushevsky, L.V., and Chang, Z., Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia, Econ. Geol., 2007, vol. 102, pp. 1233–1267.CrossRefGoogle Scholar
  24. 24.
    Marcoux, E., Bonnemaison, M., Braux, C., and Johan, Z., Distribution de Au, Sb, As et Fe dans l’arsenopyrite aurifere du Chatelet et de Dilleranges (Greuse, Massif Central Francais), Comptes Rendus de l’Academie des Sciences, 1989, vol 308, Ser. II, pp. 293–300.Google Scholar
  25. 25.
    Marion, P., Regnard, J.-R., and Wagner, F.E., Etude de l’etat chimique de l’or dans des sulfures auriferes par spectroscopie mossbauer de l97au : premiers resultats, Comptes Rendus de l’Academie des Sciences, 1986, vol. 302, Ser. II, pp. 571–574.Google Scholar
  26. 26.
    McClenaghan, S.H., Lentz, D.R., Martin, J., and Diegor, W.G., Gold in the Brunswick no. 12 volcanogenic massive sulfide deposit, Bathurst Mining Camp, Canada: evidence from bulk ore analysis and laser ablation ICP-MS data on sulfide phases, Miner. Deposita, 2009, vol. 44, pp. 523–557.CrossRefGoogle Scholar
  27. 27.
    Minina, O.V., Auerbakhovskaya complex ore-magmatic system in the Middle Urals, Otechestvennaya Geol., 1994, no. 7, pp. 17–23.Google Scholar
  28. 28.
    Murzin, V.V. and Sazonov, V.N. Gold-bearing mineral assemblages in the copper and iron skarn deposits of the Tur’insk–Auerbakhovsk ore field and their formation condition (the Urals, Russia), Geol. Ore Deposits, 1999, vol.41, no. 4, pp. 308–321.Google Scholar
  29. 29.
    Murzin, V.V., Naumov, E.A., Azovskova, O.B., Varlamov, D.A., Rovnushkin, M.Yu., and Pirajno, F., The Vorontsovskoe Au–Hg–As ore deposit (Northern Urals, Russia): geological setting, ore mineralogy, geochemistry, geochronology and genetic model, Ore Geol. Rev., 2017, vol. 85, pp. 271–298.CrossRefGoogle Scholar
  30. 30.
    Palenik, C.S., Utsunomiya, S., Reich, M., Kesler, S.E., Wang, L., and Ewing, R.C., “Invisible” gold revealed: direct imaging of gold nanoparticles in a Carlin-type deposit, Am. Mineral., 2004, vol. 89, pp. 1359–1366.CrossRefGoogle Scholar
  31. 31.
    Podlesskii, K.V., Skarny i okolorudnye metasomatity zhelezorudnykh mestorozhdenii Urala i Kavkaza (Skarns and Wall-Rock Metasomatites of the Iron Deposits of the Urals and Caucasus), Moscow: Nauka, 1979.Google Scholar
  32. 32.
    Sazonov, V.N., Murzin, V.V., and Grigor’ev, N.A., Vorontsovsk gold deposit: an example of Carlin-type mineralization in the Urals, Russia, Geol. Ore Deposits, 1998, vol.40, no. 2, pp. 139–151.Google Scholar
  33. 33.
    Sazonov, V.N., Murzin, V.V., Grigor’ev N.A., and Gladkovskii, B.A., Endogennoe orudenenie devonskogo andezitoidnogo vulkano-plutonicheskogo kompleksa (Ural) (Endogenous Mineralization of the Devonian Andesitic Volcanoplutonic Complex, Urals), Sverdlovsk: UrO AN SSSR, 1991. 184 s.Google Scholar
  34. 34.
    Self, P.G., Norrish, K., Milnes, A.R., Graham, J., and Robinson, B.W., Holes in the background in xrs, X-ray Spectrometry, 1990, vol. 19, pp. 59–61.CrossRefGoogle Scholar
  35. 35.
    Sung, Y.H., Brugger, J., Ciobanu, C.L., Pring, A., Skinner, W., and Nugus, M., Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, western Australia, Miner. Deposita, 2009, vol. 44, pp. 765–791.CrossRefGoogle Scholar
  36. 36.
    Tagirov, B.R., Dikov, Yu.P., Bulev, M.I., Koval’chuk, E.V., Chareev, D.A., Kokh, M.A., Borisovskii, S.E., Abramova, V.D., Baranova, N.N., Garas’ko, M.I., Kovalenker, V.A., and Bortnikov, N.S., “Invisible” gold in covellite (CuS): synthesis and studies by EPMA, LA–ICP–MS, and XPS techniques, Dokl. Earth Sci., 2014, vol.459, no. 1, pp. 1381–1386.CrossRefGoogle Scholar
  37. 37.
    Tagirov, B.R., Trigub, A.L., Kvashnina, K.O., Shiryaev, A.A., Chareev, D.A., Nickolsky, M.S., Abramova, V.D., and Kovalchuk, E.V., Covellite cus as a matrix for “invisible” gold: X-ray spectroscopic study of the chemical state of Cu and Au in synthetic minerals, Geochim. Cosmochim. Acta, 2016, vol. 191, pp. 58–69.CrossRefGoogle Scholar
  38. 38.
    Tarnocai, C.A., Hattori, K., and Cabri, L.J., “Invisible” gold in sulfides from the Campbell mine, Red Lake greenstone belt, Ontario: Evidence for mineralization during the peak of metamorphism. Can. Mineral, 1997, vol. 35, pp. 805–815.Google Scholar
  39. 39.
    Toulmin, P. and Barton, P.B., A thermodynamic study of pyrite and pyrrhotite, Geochim. Cosmochim. Acta, 1964, vol. 28, pp. 641–671.CrossRefGoogle Scholar
  40. 40.
    Trigub, A.L., Tagirov, B.R., Kvashnina, K.O., Chareev, D.A., Nickolsky, M.S., Shiryaev, A.A., Baranova, N.N., Kovalchuk, E.V., and Mokhov, A.V., X-ray spectroscopy study of the chemical state of “invisible” au in synthetic minerals in the Fe–As–S system, Am. Mineral., 2017, vol. 102, pp. 1057–1065.Google Scholar
  41. 41.
    Vikentyev, I.V., Invisible and microscopic gold in pyrite: methods and new data for massive sulfide ores of the Urals, Geol. Ore Deposits, 2015, vol. 57, no. 4, pp. 237–265.CrossRefGoogle Scholar
  42. 42.
    Vikentiev, I.V., Abramova V.D., Ivanova Yu.N., Tyukova, E.E., Koval’chuk, E.V., and Bortnikov, N.S., Trace elements in pyrite from the Petropavlovsk gold–porphyry deposit (Polar Urals): results of LA-ICP-MS analysis, Dokl. Earth Sci., 2016a, vol.470, no. 3, pp. 9776–980.CrossRefGoogle Scholar
  43. 43.
    Vikent’ev, I.V., Tyukova, E.E., Murzin, V.V., Vikent’eva, O.V., and Pavlov, L.G., Vorontsovskoe zolotorudnoe mestorozhdenie. Geologiya, formy zolota, genesis, (Vorontsovskoe Gold Deposit. Geology, Gold Speciation, Genesis), Yekaterinburg: Fort Dialog-Iset’, 2016b.Google Scholar
  44. 44.
    Vikentyev, I.V., Tyukova, E.E., Vikent’eva, O.V., Chugaev, A.V., Dubinina, E.O., Prokofiev, V.Yu., and Murzin, V.V., Vorontsovka Carlin-style gold deposit in the north Urals: mineralogy, fluid inclusion and isotope data for genetic model, Chem. Geol., 2019, vol. 508, pp. 144–166.CrossRefGoogle Scholar
  45. 45.
    Wagner, T., Klemd, R., Wenzel, T., and Mattson, B., Gold upgrading in metamorphosed massive sulfide ore deposits: direct evidence from laser-ablation-inductively-coupled plasma mass spectrometry of invisible gold, Geology, 2007, vol. 35, pp. 775–778.CrossRefGoogle Scholar
  46. 46.
    Wu, X. and Delbove, F., Hydrothermal synthesis of gold-bearing arsenopyrite, Econ. Geol., 1989, vol. 84, pp. 2029–2032.CrossRefGoogle Scholar
  47. 47.
    Wu, X., Delbove, F., and Touray, J.C., Conditions of formation of gold-bearing arsenopyrite: a comparison of synthetic crystals with samples from Le Chatelet gold deposit, creuse, france, Miner. Deposita, 1990, vol. 25, pp. 8–12.CrossRefGoogle Scholar
  48. 48.
    Yazeva, R.G., Puchkov, V.N., and Bochkarev, V.V., Relicts of active continental margin in the Urals structure, Geotektonika, 1989, no. 3, pp. 76–89.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. V. Kovalchuk
    • 1
    Email author
  • B. R. Tagirov
    • 1
  • I. V. Vikentyev
    • 1
  • D. A. Chareev
    • 2
  • E. E. Tyukova
    • 1
    • 3
  • M. S. Nikolsky
    • 1
  • S. E. Borisovsky
    • 1
  • N. S. Bortnikov
    • 1
  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Experimental Mineralogy, Russian Academy of SciencesChernogolovkaRussia
  3. 3.Scientific Geoinformation Center, Russian Academy of SciencesMoscowRussia

Personalised recommendations