Advertisement

Geology of Ore Deposits

, Volume 61, Issue 4, pp 293–305 | Cite as

Scale Effect in a Fluid-Conducting Fault Network

  • V. A. PetrovEmail author
  • M. Lespinasse
  • V. V. Poluektov
  • S. A. Ustinov
  • V. A. Minaev
Article
  • 10 Downloads

Abstract

This paper successively reports on a methodology for investigating the orientation and morphogenetic characteristics of fault systems at four scale levels: kilometers, meters, centimeters, and millimeters. The research object is the Urtui granite massif in southeastern Transbaikalia west of the Streltsovska caldera, incorporating unique uranium deposits. The massif is composed of Late Riphean granites and granite gneisses variably affected by dynamometamorphic and hydrothermal–metasomatic alterations and is crosscut by numerous faults with traces of fluid activity from various tectogenesis episodes. The relationship between the geometric parameters of the fault systems, such as specific density and specific length, has been established. It is advisable to use these geostructural data for conceptual and numerical modeling of fluid filtration and radionuclide transport processes in the three-dimensional fractured–pore space of crystalline rocks, for reconstructing and modeling uranium ore formation, and using the geological space for the isolation of radioactive materials.

Keywords:

fault systems cracks microcracks scale effect Urtui granite massif fluid inclusion planes porosity permeability 

Notes

ACKNOWLEDGMENTS

We thank A.A. Pek (Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences) and L.A. Sim (Schmidt Institute of Physics of the Earth, Russian Academy of Sciences) for effective discussions and valuable advice in preparing the materials for the paper.

FUNDING

The study was carried out under the state task of the Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences, “Development of an Integrated Information System for Spatiotemporal Modeling of Ore-Forming Systems at Strategic Metal Deposits Based on GIS Technologies” (project no. 0136-2018-0016).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    Agterberg, F.P., Cheng, Q., Brown, A., and Good, D., Multifractal modelling of fractures in the Lac du Bonnet batholith, Manitoba, Comput. Geosci., 1996, vol. 22, no. 5, pp. 497–507.CrossRefGoogle Scholar
  2. 2.
    Almeida, J.A., Soares, A., and Pereira, M.J., Upscaling of permeability: implementation of a conditional approach to improve the performance in flow simulation, Soc. Petrol. Eng., 1996, SPE-35490.Google Scholar
  3. 3.
    Baksheev, I.A., Golubev, V.N., Prokof’ev, V.Yu., Vigasina, M.F., Yapaskurt, V.O., and Bryzgalov, I.A., Tourmaline from quartz lenses of the Urtui Granite Pluton, Strel’tsovka Orefield, Transbaikal Krai, Mosc. Univ. Geol. Bull., 2012, vol. 67, no. 1, pp. 18–29.CrossRefGoogle Scholar
  4. 4.
    Barnhoorn, A., Cox, S.F., Robinson, D.J., and Senden, T., Stress- and fluid-driven failure during fracture array growth: implications for coupled deformation and fluid flow in the crust, Geology, 2010, vol. 38, no. 9, pp. 779–782.CrossRefGoogle Scholar
  5. 5.
    Barton, C.C., Fractal analysis of scaling and spatial clustering of fractures, Fractals in the Earth Sciences, Barton, C.C. and La Pointe, P.R., Eds., New York: Plenum Press, 1995, pp. 141–178.Google Scholar
  6. 6.
    Billaux, D., Chiles, J.P., Hestir, K., and Long, J., Three- dimensional statistical modelling of a fractured rock mass: an example from the Fanay-Augeres mine, Int. J. Rock Mechanics, Mining Sci., Geomech., Abstracts, 1989, nos. 3–4), pp. 281–299.Google Scholar
  7. 7.
    Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P., and Berkowitz, B., Scaling of fracture systems in geological media, Rev. Geophys., 2001, no. 39, pp. 347–383.Google Scholar
  8. 8.
    Boullier, A.M., Fluid inclusions: tectonic indicators, J. Struct. Geol., 1999, no. 21, pp. 1229–1235.Google Scholar
  9. 9.
    Bour, O. and Davy, P., Connectivity of random fault networks following a power law fault length distribution, Water Resour. Res., 1997, no. 33, pp. 1567–1583.Google Scholar
  10. 10.
    Bour, O., Davy, P., Darcel, C., and Odling, N., A statistical scaling model for fracture network geometry, with validation on a multiscale mapping of a joint network (Hornelen Basin, Norway), J. Geophys. Res. B: Solid Earth, 2002, vol. 107.  https://doi.org/10.1029/2001JB000176
  11. 11.
    Caine, J.S., Evans, J.P., and Forster, C.B., Fault zone architecture and permeability structure, Geology, 1996, no. 24, pp. 1025–1028.Google Scholar
  12. 12.
    Castaing, C., Halawani, M.A., Gervais, F., Chilès, J.P., Genter, A., Bourgine, B., Ouillon, G., Brosse, J.M., Martin, P., Genna, A., and Janjou, D., Scaling relationships in intraplate fracture systems related to Red Sea rifting, Tectonophysics, 1996, no. 261, pp. 291–314.Google Scholar
  13. 13.
    Cathelineau, M., Lespinasse, M., and Boiron, M.C., Fluid inclusions planes: a geochemical and structural tool for the reconstruction of paleofluid migration, Fluid Inclusions in Minerals: Methods and Applications, Virginia Technology, 1994, p. 158.Google Scholar
  14. 14.
    Chernyshev, S.N., Dvizhenie vody po setyam treshchin (Movement of Water along Fracture Network), Moscow: Nedra, 1979.Google Scholar
  15. 15.
    Deformirovanie geofizicheskoi sredy i seismicheskii protsess (Deformation of Geophysical Medium and Seismic Process), Sadovskii, M.A., Bolkhovitinov, L.G., and Pisarenko, V.F. Eds., Moscow: Nauka, 1987.Google Scholar
  16. 16.
    Dersowitz, W., Redus, K., Wallmann, P., Lapointe, P., and Axelsson, C.-L., The Implication of Fractal Dimension in Hydrogeology and Rock Mechanics. Version 1.1. SKB Technical Report 92-17, Stockholm, 1992.Google Scholar
  17. 17.
    Dewandel, B., Marechal, J.-C., Bour, O., et al., Upscaling and regionalizing hydraulic conductivity and effective porosity at watershed scale in deeply weathered crystalline aquifers, J. Hydrol., 2012, vol. 416–417, pp. 83–97.CrossRefGoogle Scholar
  18. 18.
    Dezayes, C., Genter, A., and Valley, B., Structure of the low permeable naturally fractured geothermal reservoir at Soultz, Comptes Rendus Geosci., 2010, no. 342, pp. 517–530.Google Scholar
  19. 19.
    Ehlen, J., Fractal analysis of joint patterns in granite, Int. J. Rock Mechanics, Mining Sci. Geomech., 2000, no. 7, pp. 909–922.Google Scholar
  20. 20.
    Empereur-Mot, L. and Villemin, T., Fractal properties of fragmentation and stochastic fracturing processes: geometrical 3D approach by OBSIFRAC model, Comptes Rendus Geosci., 2002, no. 334, pp. 127–133.Google Scholar
  21. 21.
    Falconer, K., Techniques in Fractal Geometry, Chichester: John Wiley and Sons, 1997.Google Scholar
  22. 22.
    Le Garzic, E., De L’Hamaide, T., Diraison, M., et al., Scaling and geometric properties of extensional fracture systems in the Proterozoic basement of Yemen. Tectonic interpretation and fluid flow implications, J. Struct. Geol., 2011, no. 33, pp. 519–536.Google Scholar
  23. 23.
    Golubev V.N. Age of dispersed uranium mineralization in rocks of the framework of the Strel’tsovka uranium ore field and the Yamsky Site, Eastern Transbaikal Region, Geol. Ore Dep., 2011, vol. 53, no. 5, pp. 401–411.CrossRefGoogle Scholar
  24. 24.
    Gueguen, Y. and Diennes, J., Transport properties of rocks from statistics and percolation, Mathematical Geol., 1989, no. 21, pp. 1–13.Google Scholar
  25. 25.
    Gueguen, Y., Ravalec, M.L., and Ricard, L., Upscaling: effective medium theory, numerical methods and the fractal dream, J. Pure Appl. Geophys., 2006, no. 163, pp. 1175–1192.Google Scholar
  26. 26.
    Kruhl, J.H., Fractal-geometry techniques in the quantification of complex rock structures: a special view on scaling regimes, inhomogeneity and anisotropy, J. Struct. Geol., 2013, no. 46, pp. 2–21.Google Scholar
  27. 27.
    Laverov, N.P., Petrov, V.A., Velichkin, V.I., Poluektov, V.V., Nasimov, R.M., D’yaur, N.I., Burmistrov, A.A., Lespinas, M., Saus, J., Kyune, M., and Lerua, J.L., A comparative analysis of filtration properties of granites on a maro- and micro levels in relation with isolation of radioactive wastes, Geoekologiya, 2004, no. 4, pp. 293–309.Google Scholar
  28. 28.
    Lespinasse, M. and Pecher, A., Microfracturing and regional stress field: a study of preferred orientations of fluid inclusion planes in a granite from the Massif Central, France, J. Struct. Geol., 1986, no. 8, pp. 169–180.Google Scholar
  29. 29.
    Lespinasse, M., Are fluid inclusion planes useful in structural geology?, J. Struct. Geol., 1999, no. 21, pp. 1237–1243.Google Scholar
  30. 30.
    Lespinasse, M., Désindes, L., Fratczak, P., and Petrov, V., Microfissural mapping of natural cracks in rocks: implications on fluid transfers quantification in the crust, J. Chem. Geol., 2005, vol. 223, pp. 170–178.CrossRefGoogle Scholar
  31. 31.
    Liu, J., Elsworth, D., Brady, B.H., and Muhlhaus, H.B., Strain-dependent fluid flow defined through rock mass classification schemes, Rock Mech., 2000, vol. 33, no. 2, pp. 75–92.CrossRefGoogle Scholar
  32. 32.
    Mallet, J.-L., Elements of Mathematical Geology: the GeoChron Model, EAGE Publications, 2014.Google Scholar
  33. 33.
    Margolin, G., Berkowitz, B., and Scher, H., Structure, flow, and generalized conductivity scaling in fracture networks, Water Resour. Res., 1998, vol. 34, no. 9, pp. 2103–2121.CrossRefGoogle Scholar
  34. 34.
    Odling, N.E. and Roden, J.E., Contaminant transport in fractured rocks with significant matrix permeability, using natural fracture geometries, J. Contam. Hydrol., 1997, no. 27, pp. 263–283.Google Scholar
  35. 35.
    Olsson, R. and Barton, N., An improved model for hydromechanical coupling during shearing of rock joints, Int. J. Rock Mech. Min. Sci., 2001, no. 38, pp. 317–329.Google Scholar
  36. 36.
    Paredes, C. and Elorza, F.J., Fractal and multifractal analysis of fractured geological media: surface–subsurface correlation, Comp. Geosci., 1999, no. 25, pp. 1081–1096.Google Scholar
  37. 37.
    Park, C.K., Vandergraaf, T.T., Drew, D.J., and Hahn, P.S., Analysis of the migration of nonsorbing tracers in a natural fracture in granite using a variable aperture channel model, J. Contam. Hydrol., 1997, no. 26, pp. 97–108.Google Scholar
  38. 38.
    Petrov, V.A., Lespinasse, M., Poluektov, V.V., Cuney, M., Nasimov, R.M., Hammer, J., and Schukin, S.I., Stress-time context of fault permeability at the Krasnokamensk Area, SE Transbaikalia, J. Phys.: Conf. Ser., 2013, vol. 416, 012018Google Scholar
  39. 39.
    Petrov, V.A., Ustinov, S.A., Poluektov, V.V., Prokof’ev, V.Yu., Reconstruction of pathwats and conditions of migration of the ore-bearing hydrothermal solutions: structural–geological and thermobarogeochemical approach, Vestn. Ross. Fonda Fundament. Issled., 2013, no. 1, pp. 27–33.Google Scholar
  40. 40.
    Petrov V.A., Rebetskii Yu.L., Poluektov V.V., Burmistrov A.A. Tectonophysics of hydrothermal ore formation: an example of the Antei Mo–U deposit, Transbaikalia, Geol. Ore Deposits, 2015, vol. 57, no. 4, pp. 327–350.CrossRefGoogle Scholar
  41. 41.
    Petrov, V.A., Lespinasse, M., Poluektov, V.V., Ustinov, S.A., and Minaev, V.A., Rescaling of fluid-conducting fault structures, Dokl. Earth Sci., 2017, vol. 472, no. 4, pp. 130–133.CrossRefGoogle Scholar
  42. 42.
    Poluektov, V.V., Petrov, V.A., Andreeva, O.V., Ustinov, S.A., and Prokof’ev, V.Yu., Structural–petrological features of ore-bearing rocks of the Strel’tsovka caldera and its framing (SE Transbaikalia), Vserossiiskaya konferentsiya, posvyashchennaya 120-letiyu so dnya rozhdeniya ak. A.G. Betekhtina (All-Russian Conference Dedicated to the 120 th Anniversary of Academician A. Belyankin), Moscow: IGEM RAN, 2017, pp. 160–164.Google Scholar
  43. 43.
    Reeves, D., Parashar, R., Pohll, G.C., Rosemary, B., and Willoughby, K., The use of discrete fracture network simulations in the design of horizontal hillslope drainage networks in fractured rock, Eng. Geol., 2013, no. 163, pp. 132–143.Google Scholar
  44. 44.
    Rock Fractures and Fluid Flow: Contemporary Understanding and Applications, Washington, D.C.: Nat. Acad. Press, 1996.Google Scholar
  45. 45.
    Sadovskii, M.A., On the distribution of sizes of solid joints, Dokl. Akad. Nauk SSSR, 1983, vol. 269, no. 1, pp. 69–72.Google Scholar
  46. 46.
    Selroos, J.-O., Walker, D.D., Strom, A., Gylling, B., and Follin, S., Comparison of alternative modeling approaches for groundwater flow in fractured rock, J. Hydrol., 2002, no. 257, pp. 174–188.Google Scholar
  47. 47.
    Seminskii, K.Zh., Vnutrennyaya struktura kontinental’nykh razlomnykh zon. Tektonofizicheskii aspect (Internal Structure of Continental Fault Zones. Tectonophysical Aspect), Novosibirsk: SO RAN, Filial “Geo”, 2003.Google Scholar
  48. 48.
    Smith, D.L. and Evans, B., Diffusional crack healing in quartz, J. Geophys. Res., 1984, no. 89, pp. 4125–4135.Google Scholar
  49. 49.
    Ustinov, S.A. and Petrov, V.A., Application of GIS-technology for microstructural analysis in geology, Geoinformatika, 2015, no. 2, pp. 33–46.Google Scholar
  50. 50.
    Walsh, J.J. and Watterson, J., Fractal analysis of fracture patterns using the standard box-counting technique: valid and invalid methodologies, J. Struct. Geol., 1993, vol. 15, no. 12, pp. 1509–1512.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Petrov
    • 1
    Email author
  • M. Lespinasse
    • 2
  • V. V. Poluektov
    • 1
  • S. A. Ustinov
    • 1
  • V. A. Minaev
    • 1
  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Laboratory of Georesources, University of LorraineNancyFrance

Personalised recommendations