Geology of Ore Deposits

, Volume 61, Issue 2, pp 133–161 | Cite as

Tellurium-Bearing Mineralization in Clastic Ores at the Yubileynoe Copper Massive Sulfide Deposit (Southern Urals)

  • A. S. TseluykoEmail author
  • V. V. Maslennikov
  • N. R. Ayupova
  • S. P. Maslennikova
  • L. V. Danyushevsky


At the well-preserved Yubileynoe VMS deposit (Southern Urals), sulfide breccias and turbidites host abundant tellurides represented by hessite, coloradoite, altaite, volynskite, stützite, petzite, and calaverite, as well as phases of the intermediate tellurobismuthite → rucklidgeite solid solution. Three telluride generations were highlighted: (1) primary hydrothermal tellurides in fragments of chalcopyrite and sphalerite of chalcopyrite-rich black smoker chimneys; (2) authigenic tellurides in pseudomorphic chalcopyrite and chalcopyrite veins after fragments of colloform and granular pyrite; and (3) authigenic tellurides in pyrite nodules. Authigenic tellurides are widespread in pyrite-chalcopyrite turbidites. Primary hydrothermal and authigenic tellurides are less common in sulfide turbidites and gritstones with fragments of sphalerite-pyrite, pyrite-sphalerite paleosmoker chimneys and clasts of colloform and fine-grained seafloor hydrothermal crusts. Siliceous siltstones intercalated with sulfide turbidites contain pyrite nodules, whose peripheral parts contain inclusions of epigenetic tellurides. It is assumed that Te for authigenic tellurides originated from fragments of colloform pyrite and hydrothermal chalcopyrite of pyrite-chalcopyrite chimneys, which dissolved during the postsedimentation processes. The main Te concentrators in clastic ores include pseudomorphic chalcopyrite, which inherits high Te, Bi, Au, Ag, Co, Ni, and As contents from the substituted colloform pyrite, and varieties of granular pyrite containing microinclusions of tellurobismuthite (Bi, Te), petzite (Au, Ag, Te), altaite (Pb, Te), coloradoite, and hessite (Ag, Te).


tellurides turbidites paleosmoker chimneys LA-ICP-MS massive sulfide ores the Urals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artemyev, D.A., Maslennikov, V.V., and Filippova, K.A., Inductively coupled plasma and laser ablation mass-spec-trometry in the mineralogical-geochemical studies of the Institute of Mineralogy of Ural Branch of the Russian Academy of Sciences, Metallogeniya drevnikh i sovremen-nykh okeanov-2017 (Metallogeny of Ancient and Modern Oceans-2017), Miass: IMinUrO RAN, 2017. pp. 201–206.Google Scholar
  2. Ayupova, N.R., Maslennikov, V.V., Kotlyarov, V.A., Maslennikova, S.P., Danyushevsky, L.V., and Larzh, R., Se and In minerals in the submarine oxidation zone of a massive sulfide orebody of the Molodezhnoe copper zinc massive sulfide deposit, Southern Urals, Dokl. Earth Sci., 2017, vol. 473, no. 1, pp. 318–322.CrossRefGoogle Scholar
  3. Ayupova, N.R., Melekestseva, I.Yu., Maslennikov, V.V., et al., Uranium accumulation in modern and ancient Feoxide sediments: examples from the Ashadze-2 hydrothermal sulfide field (Mid-Atlantic Ridge) and Yubileynoe massive sulfide deposit (South Urals, Russia), Sediment. Geol., 2018, vol. 367, pp. 164–174.CrossRefGoogle Scholar
  4. Belogub, E.V. and Malyarenok, M.N., Experimental study of influence of structural features of sulfide ores on kinetics of their oxidation, Mineralogiya tekhnogeneza-2006 (Mineralogy of Technogenesis-2006), Miass: IMin UrO RAN, 2006, pp. 224–230.Google Scholar
  5. Belogub, E.V., Moloshag, V.P., Novoselov, K.A., and Kotlyarov, V.A., Native bismuth, tsumoite and lead tsumoite from the Tarn’erskii copper zinc sulfide deposit (North Urals), Zap. Ross. Mineral. O-va, 2010, vol. 139, no. 6, pp. 82–93.Google Scholar
  6. Berkenbosch, H.A., de Ronde, C.E.J., Gemmel, J.B., et al., Mineralogy and formation of black smoker chimneys from Brothers submarine volcano, Kermadec arc, Econ. Geol., 2012, vol. 107, pp. 1613–1633.CrossRefGoogle Scholar
  7. Bogdanov, Yu.A., Lisitsyn, A.P., Sagalevich, A.M., and Gurvich, E.G., Gidrotermal’nyi rudogenez okeanskogo dna (Ocean Floor Hydrothermal Ore Genesis), Moscow: Nauka, 2006.Google Scholar
  8. Brueckner, S.M., Piercey, S.J., Pilote, J.L., et al., Mineralogy and mineral chemistry of the metamorphosed and precious metal-bearing Ming deposit, Canada, Ore Geol. Rev., 2016, vol. 72, pp. 914–939.CrossRefGoogle Scholar
  9. Danyushevsky, L., Robinson, P., Gilbert, S., et al., Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: standard development and consideration of matrix effect, Geochim. Explor. Environm. Anal., 2011, vol. 11, pp. 51–60.CrossRefGoogle Scholar
  10. Deditius, A.P., Utsunomiys, S., Reich, M., et al., Trace metal nanoparticles in pyrite, Ore Geol. Rev., 2011, vol. 42, pp. 32–46.CrossRefGoogle Scholar
  11. Dergachev, A.L., Sergeeva, N.E., and Filitsina, T.A., On ore clastites of the Nikolaevskoe sulfide-base metal deposit on Rudny Altai, Geol. Rudn. Mestorozhd., 1986, no. 1, pp. 89–95.Google Scholar
  12. Eremin, N.I., Differentsiatsiya vulkanogennogo sul’fidnogo orudeneniya (Differentiation of the Volcanogenic Sulfide Mineralization), Moscow: MGU, 1983.Google Scholar
  13. Eremin, N.I., Sergeeva, N.E., Dergachev, A.L. Rare minerals from massive sulfide ores: typomorphic features and geochemical trend, Moscow Univ. Geol. Bull., 2007, vol. 62, no. 2, pp. 98–106.CrossRefGoogle Scholar
  14. Firstova, A., Stepanova, T., Cherkashov, G., et al., Composition and formation of gabbro-peridotite hosted seafloor massive sulfide deposits from the Ashadze-1 hydrothermal field, Mid-Atlantic Ridge, Minerals, 2016, vol. 6, no. 19, pp. 1–20.Google Scholar
  15. Fouquet, Y., Cambon, P., Etoubleau, J., et al., Geodiver-sity of hydrothermal processes along the mid-atlantic ridge and ultramafic-hosted mineralization: a new type of oceanic Cu Zn Co Au volcanogenic massive sulfide deposit, Geophys. Monogr. Ser., 2010, vol. 188, pp. 321–367. Geologicheskii slovar’ (Glossary of Geology), Moscow: Nedra, 1978.Google Scholar
  16. Goodfellow, W.D. and Blaise, B., Sulfide formation and hydrothermal alteration of hemipelagic sediment in Middle Valley, northern Juan de Fuca Ridge, Can. Mineral., 1988, vol. 26, pp. 675–696.Google Scholar
  17. Hassan, L.Y. and Roberts, M.P., Tellurides associated with volcanogenic massive sulfide (VMS) mineralization at Yuinmery and Austin, Western Australia, Ore Geol. Rev., 2017, vol. 80, pp. 352–362.CrossRefGoogle Scholar
  18. Huston, D.L., Sie, S.H., Sutter, G.F., et al., Trace elements in sulfide minerals from eastern australian volcanic-hosted massive sulfide deposits. Part I. Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II. Selenium levels in pyrite comparison with 5S34 values and implication for the source of sulfur in volcanogenic hydrothermal systems, Econ. Geol., 1995, vol. 90, pp. 1167–1196.CrossRefGoogle Scholar
  19. Iizasa, K., Yuasa, M., and Yokota, S., Mineralogy and geochemistry of volcanogenic sulfides from the Myojinsho submarine caldera, the Shichito Iwojima Ridge, Izu Ogasavara Arc, north-western Pacific, Mar. Geol., 1992, vol. 108, pp. 39–58.CrossRefGoogle Scholar
  20. Ismagilov, M.I., Zonal distribution of selenium and tellurium in pyrrhotite-bearing sulfide lodes of the South Urals, Mineralogiya i geokhimiya i genezis poleznykh iskopaemykh Yuzhnogo Urala (Mineralogy, Geochemistry, and Genesis of Mineral Resources of the South Urals), Garris, M.A., Eds., Ufa: BFAN SSSR, 1986, pp. 50–59.Google Scholar
  21. Kosarev, A.M., Seravkin, I.B., and Kholodnov, V.V., Geo-dynamic and petrological aspects of zoning of the Magnitogorsk sulfide megazone at the South Urals, Litosfera, 2014, no. 2, pp. 3–25.Google Scholar
  22. Lein, A.Yu., Cherkashev, G.A., Ul’yanov, A.A., et al., Mineralogy and geochemistry of sulfide ores from the Logachev-2 and Rainbow fields: similar and distinctive features, Geochem. Int., 2003, vol. 41, no. 3, pp. 271–294.Google Scholar
  23. Maslennikov, V.V., Sedimentogenez, gal’miroliz i ekologiya kolchedanonosnykh paleogidrotermal’nykh polei (na primere Yuzhnogo Urala) (Sedimentogenesis, Halmyrolysis, and Ecology of Sulfide Paleohydrothermal Fields by the Example of the South Urals), Miass: Geotur, 1999.Google Scholar
  24. Maslennikov, V.V., Litogenez i kolchedanoobrazovanie (Lithogenesis and Sulfide Formation), Miass: IMinUrO RAN, 2006.Google Scholar
  25. Maslennikova, S.P. and Maslennikov, V.V., Sul’fidnye truby paleozoiskikh “chernykh kuril’shchikov” (na primere Urala) (Sulfide Chimneys of the Paleozoic Black Smokers by the Example of the Urals), Yekaterinburg Miass: UrO RAN, 2007.Google Scholar
  26. Maslennikov, V.V., Maslennikova, S.P., Large, R.R., and Danyshevsky, L.V., Study of trace element zonation in vent chimneys from Silurian Yaman-Kasy VHMS (the Southern Urals, Russia) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Econ. Geol., 2009, vol. 104, no. 8, pp. 1111–1141.CrossRefGoogle Scholar
  27. Maslennikov, V.V., Lein, A.Yu., Maslennikova, S.P., and Bogdanov, Yu.A., Phanerozoic black smokers as indicators of composition of ore-bearing complexes, Litosfera, 2010, no. 3, pp. 153–162.Google Scholar
  28. Maslennikov, V.V., Ayupova, N.R., Maslennikova, S.P., et al., Mineral and chemical peculiarities of vent chimneys from the Yubileynoye VMS deposit at the Early Devonian basalt boninite basement of West Magnitogorsk Arc, the Southern Urals, Russia, Proceedings of the 12 SGA Biennial Meeting, Uppsala, 2013a, vol. 4, pp. 1512–1515.Google Scholar
  29. Maslennikov, V.V., Maslennikova, S.P., Large, R.R., et al., Tellurium-bearing minerals in zoned sulfide chimneys from Cu Zn massive sulfide deposits of the Urals, Russia, Mineral. Petrol., 2013b, vol. 107, pp. 67–99.CrossRefGoogle Scholar
  30. Maslennikov, V.V., Maslennikova, S.P., Tret’yakov, G.A., et al., Fahlores in the Paleozoic smokers from sulfide deposits of the Urals and Rudny Altai, Mineralogiya, 2015, no. 4, pp. 53–78.Google Scholar
  31. Maslennikov, V.V., Ayupova, N.R., Artemyev, D.A., and Tseluiko, A.S., Microtopochemistry of marcasite pyrite nodules in the illite hematite gossanites of the Lahanos copper-zinc-sulfide deposit, Pontides, Turkey: LA-ISP-MS data, Mineralogiya, 2017, no. 3, pp. 48–70.Google Scholar
  32. Maslennikov, V.V., Maslennikova, S.P., Large, R.R., et al., Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: mineral and trace element comparison with modern black, gray and clear smokers, Ore Geol. Rev., 2017, vol. 85, pp. 64–106.CrossRefGoogle Scholar
  33. Mednokolchedannye mestorozhdeniya Urala: Geologicheskoe stroenie (Copper Sulfide Deposits of the URals: Geological Structure), Prokin, V.A. Buslaev, F.P. Ismagilov, M.I., Eds., Sverdlovsk: UrO RAN, 1988.Google Scholar
  34. Melekestseva, I.Yu., Kotlyarov, V.A., Ivanov, V.N., et al., Rudy novogo gidrotermal’nogo sul’fidnogo uzla Semenov (13°31′ N), Sredinno-Atlanticheskii khrebet (Ores of the new Semenov hydrothermal sulfide cluster 13°31′, Mid-Atlantic Ridge, Litosfera, 2010, no. 2, pp. 47–61.Google Scholar
  35. Moloshag, V.P., Telluride mineralization of sulfide deposits of the Urals: new data, Litosfera, 2011, no. 6, pp. 91–102.Google Scholar
  36. Moloshag, V.P., Grabezhev, A.I., and Gulyaeva, T.Ya., Conditions of formation of tellurides in the sulfide copper-gold porphyry deposits of the Urals, Zap. Ross. Mineral. Ova, 2002, vol. 131, no. 5, pp. 40–54.Google Scholar
  37. Mutalov, M.G., On the selenium and tellurium in the oreforming sulfides of some deposits of the Uzel’ga ore field, Geokhimiya, 1977, pp. 748–755.Google Scholar
  38. Oudin, E. and Constantinou, G., Black smoker chimney fragments in Cyprus sulfide deposits, Nature, 1984, vol. 308, pp. 349–353.CrossRefGoogle Scholar
  39. Pshenichnyi, G.N., Selenium and tellurium in the ores and minerals of the Oktyabr’skoe copper sulfide deposits at the South Urals, Mineralogiya, geokhimiya, metamorfizm ipoleznye iskopaemye Bashkirskogo Zaural’ya (Mineralogy, Geochemistry, Metamorphism, and Mineral Resources of the Bashkirian Transurals), Ufa: BFAN, 1974, pp. 69–74.Google Scholar
  40. Revan, M.K., Genc, Y., Maslennikov, V.V., et al., Original findings on the ore-bearing facies of volcanogenic massive sulphide deposits in the eastern Black Sea region (NE Turkey), Bull. MTA, 2013, vol. 147, pp. 73–89.Google Scholar
  41. Safina, N.P. and Maslennikov, V.V., Composition and products of natural transformation of clastic sulfide deposits in the ore lodes of the Yaman-Kasy and Safyanovskoe sulfide deposit, Uras, Litosfera, 2007, no. 2, pp. 130–140.Google Scholar
  42. Safina N.P. and Maslennikov, V.V., Rudoklastity kolchedannykh mestorozhdenii Yaman-Kasy i Safyanovskoe (Ural) (Ore Clastites of the Yaman-Kasy and Saf’yanovskoe Sulfide Deposits (Urals)), Miass: UrO RAN, 2009. 260 p.Google Scholar
  43. Safina, N.P., Maslennikov, V.V., Maslennikova, S.P., et al., Banded sulfide-magnetite ores of Mauk copper massive sulfide deposit, Central Urals: composition and genesis, Geol. Ore Deposits, 2015, vol. 57, no. 3, pp. 197–212.CrossRefGoogle Scholar
  44. Seravkin, I.B., Correlation between compositions of ore and host rocks in volcanogenic massive sulfide deposits of the Southern Urals, Geol. Ore Deposits, 2013, vol. 55, no. 3, pp. 207–258.CrossRefGoogle Scholar
  45. Shadlun, T.N., On collomorphic structures of the Yaman-Kasy deposit, the South Urals, Zap. Vsesoyuz. Mineral. O-va, 1942, vol. 71, no. 3–4, pp. 151–159.Google Scholar
  46. Shadlun, T.N., Tellurium-bismuth from sulfide ore of the Uchaly deposit, South Urals, Zap. Vsesoyuz. Mineral. O-va, 1961. Ch. 90. no. 3, pp. 294–296.Google Scholar
  47. Shimazaki, H. and Horikoshi, E., Black ore chimney from the Hanaoka Kuroko deposits, Japan, Mining Geol., 1990, vol. 40, no. 5, pp. 313–321.Google Scholar
  48. Smirnov, V.I., Korrelyatsionnye metody pri parageneticheskom analize (Correlation Methods during Paragenetic Analysis), Moscow: Nedra, 1981.Google Scholar
  49. Thorpe, R.I. and Harris, D.C., Mattagamite and tellurantimony, two new telluride minerals from Mattagami Lake Mine, Matagami Area, Quebec, Can. Mineral., 1973, vol. 12, pp. 55–60.Google Scholar
  50. Torokhov, M.P., Cherkashev, G.A., Stepanova, T.V., and Zhirnov, E.A., Uranium, its minerals and paragenesis in massive sulfides of the Logachev-2, Mar ore field, Inter-Ridge News, 2002, vol. 11, pp. 32–33.Google Scholar
  51. Tseluyko, A.S., Maslennikov, V.V., Ayupova, N.R., and Maslennikova, S.P., Mineral and structural-textural features of ore facies of the Yubileynoe copper-sulfide deposit, South Urals, Izv. Vyssh. Ucheb. Zaved., Geol. Razvedka, 2017, no. 4, pp. 50–56.Google Scholar
  52. Urusov, V.S., Teoreticheskaya kristallokhimiya (Theoretical Crystal Chemistry), Moscow: 1987.Google Scholar
  53. Vikentyev, I.V., Invisible and microscopic gold in pyrite: methods and new data for massive sulfide ores of the Urals, Geol. Ore. Deposits, 2015, vol. 57, no. 4, pp. 237–265.CrossRefGoogle Scholar
  54. Vikentyev, I.V., Usloviya formirovaniya i metamorfizm kolchedannykh rud (Conditions of Formation and Metamorphism of Sulfide Ores), Moscow: Nauchnyi Mir, 2004.Google Scholar
  55. Vikentyev, I.V., Precious metal and telluride mineralogy of large volcanic-hosted sulfide deposit in the Urals, Mineral. Petrol, 2006, vol. 87, pp. 305–326.CrossRefGoogle Scholar
  56. Vikentyev, I.V., Selenium, tellurium and precious metal mineralogy in Uchalinsk copper-zinc-pyritic district, the Urals, IOP Conf. Series: Materials Science and Engineering, 2016, vol. 123, pp. 1–6.Google Scholar
  57. Vikentyev, I.V., Saenko, A.G., Karelina, E.V., et al., Mineralogical features of ores of the Yubileynoe copper sulfide deposit, S. Urals, Vestn. RUDN, Inzh. Issled., 2011, no. 1, pp. 84–89.Google Scholar
  58. Vikentyev, I.V. Belogub, E.V. Novoselov, K.A., and Moloshag, V.P., Metamorphism of volcanogenic massive sulphide deposits in the Urals. Ore geology, Ore Geol. Rev., 2017, vol. 85, pp. 30–63.CrossRefGoogle Scholar
  59. Wohlegemuth-Ueberwasser, C.C., Vijoen, F., Petersen, S., and Vorster, C., Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: an in-situ LA-ICP-MS study, Geochim. Cosmochim. Acta, 2015, vol. 159, pp. 19–41.Google Scholar
  60. Yushko, S.A., Metody laboratornogo issledovaniya rud (Methods of Laboratory Study of Ores), Moscow: Nedra, 1966.Google Scholar
  61. Yushko-Zakharova, O.E., Ivanov, V.V., Vorob’eva, M.S., et al., Geochemistry of selenium, tellurium, vismuth, and copper-zing-sulfide deposits of the Urals and some questions of sulfide ore formation, Geokhimiya, 1978, no. 9, pp. 1368–1378.Google Scholar
  62. Zierenberg, R.A., Kosti, R.A., Morton, J.L., and Bouse, R.M., Genesis of massive sulfide deposit on a sediment-covered spreading center, Escanaba Trough, Southern Gorda Ridge, Econ. Geol., 1993, vol. 88, pp. 67–81.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. S. Tseluyko
    • 1
    • 2
    Email author
  • V. V. Maslennikov
    • 1
    • 2
  • N. R. Ayupova
    • 1
    • 2
  • S. P. Maslennikova
    • 1
  • L. V. Danyushevsky
    • 3
  1. 1.Institute of Mineralogy, Ural BranchRussian Academy of Sciences, Ilmeny State ReserveMiass, Chelyabinsk oblastRussia
  2. 2.Miass BranchSouthern Urals State UniversityMiass, Chelyabinsk oblastRussia
  3. 3.Centre for Deposit and Exploration StudiesUniversity of TasmaniaHobartAustralia

Personalised recommendations