Geology of Ore Deposits

, Volume 60, Issue 6, pp 527–545 | Cite as

Dvoinoe Au–Ag Epithermal Deposit, Chukchi Peninsula, Russia

  • A. V. VolkovEmail author
  • N. E. Savva
  • E. E. Kolova
  • V. Yu. Prokofiev
  • K. Yu. Murashov


The Dvoinoe Au-Ag low-sulfide epithermal deposit is located in the Ilirnei ore district (western Chukotka) within the outer zone of the Okhotsk–Chukotka volcanic belt (OChVB). The paper considers the results of geological–structural, mineralogical–geochemical, and thermobarogeochemical studies of the deposit. The ores of the deposit are characterized by dominant colloform-banded (often combined with brecciated) structures; a high Au/Ag ratio (1: 1 to 1: 2); low sulfidity (<0.5%); the presence of hessite, small sulfide segregations (0.005–0.015 mm), and a larger amount of native gold (0.01–0.07 mm); high Au, Ag, and Sb contents; relatively high As, Cu, Pb, and Cd contents; higher Zn, Bi, and Te contents; a low total REE; and negative Eu and positive Ce anomalies. The geochemical features are consistent with the ore mineral composition. The high Rb/Sr, Th/La, Y/Ho, and U/Th ratios of ores are most likely caused by the position of the deposit in the zone of influence of the Ilirnei granitic pluton. A fluid inclusion study showed that the ores were formed from Na–K–Mg low-saline (5.58–0.2 wt % NaCl-equiv.) hydrothermal fluids with a small amount of CO2, H2S, and CH4 with decreasing temperatures from 370 to 130°C and the following fluid parameters: CO2/CH4 = 217–53, Na/K = 5–2, and K/Rb = 2722–202. The results are compared with original and published data on the Kupol, Moroshka, and Sentyabr’sky deposits. Our data are important for regional forecasting, interpreting metallogeny, and the search for and evaluation of Au–Ag epithermal deposits.


western Chukotka deposit epithermal ore mineralogy gold silver trace elements fluid inclusions genetic features 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akinin, V.V., Tomson, B.T., and Polzunenkov, G.O., U-Pb and 40Ar/39Ar dating of magmatism and mineralization at the Kupol and Dvoinoe gold deposits, Izotopnoe datirovanie geologicheskikh protsessov: novye rezul’taty, podkhody i perspektivy: Mater. VI Rossiiskoi konf. po izotopnoi geokhronologii (Isotope Dating of Geological Processes: New results, Approaches, and Prospects), Sankt-Petersburg: IGGD RAN, 2015, pp. 19–21.Google Scholar
  2. Anders, E., Abundances of the elements: meteoric and solar, Geochim. Cosmochim. Acta, 1989, vol. 53, pp. 197–214.CrossRefGoogle Scholar
  3. Andre-Mayer, A.S. and Bailly, J.L., Chauvet, A., et al., Boiling and vertical mineralization zoning: a case study from the Apacheta low-sulfidation epithermal gold-silver deposit, southern peru, Mineral. Deposita, 2002, vol. 37, no. 5, pp. 452–464.CrossRefGoogle Scholar
  4. Bau, M., Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium, Chem. Geol., 1991, vol. 93, pp. 219–230.CrossRefGoogle Scholar
  5. Bodnar, R.J. and Vityk, M.O., Interpretation of microtermometric data for H2O–NaCl fluid inclusions, Fluid Inclusions in Minerals: Methods and Applications, Pontignano: Siena, 1994, pp. 117–130.Google Scholar
  6. Borisenko, A.S., Cryometric study of salt composition of gas–liquid inclusions in minerals, Geol. Geofiz., 1977, no. 8, pp. 16–27.Google Scholar
  7. Borovikov, A.A., Lapukhov, A.S., Borisenko, A.S., and Seretkin, Yu.V., The Asachinskoe epihermal Au–Ag deposit in southern Kamchatka: physicochemical conditions of formation, Russ. Geol. Geophys., 2009, vol. 50, no. 8, pp. 685–694.CrossRefGoogle Scholar
  8. Bortnikov, N.S., Geochemistry and origin of the ore-forming fluids in hydrothermal–magmatic systems in tectonically active zones, Geol. Ore Deposits, 2006, vol. 48, no. 1, pp. 1–22.CrossRefGoogle Scholar
  9. Bortnikov, N.S., Gamyanin, G.N., Vikent’eva, O.V., Prokof’ev, V.Yu., Alpatov, V.A., and Bakharev, A.G., Fluid Composition and Origin in the Hydrothermal System of the Nezhdaninsky Gold Deposit, Sakha (Yakutia), Russia, Geol. Ore Deposits, 2007, vol. 49, no. 2, pp. 87–146.CrossRefGoogle Scholar
  10. Brown, P., Flincor: a computer program for the reduction and investigation of fluid inclusion data, Am. Mineral., 1989, vol. 74, pp. 1390–1393.Google Scholar
  11. Goryachev, N.A., Vikent’eva, O.V., Bortnikov, N.S., Prokof’ev, V.Yu., Alpatov, V.A., and Golub, V.V. The world-class Natalka gold deposit, Northeast Russia: REE patterns, fluid inclusions, stable oxygen isotopes, and formation conditions of ore, Geol. Ore Deposits, 2008, vol. 50, no. 5, pp. 362–390.CrossRefGoogle Scholar
  12. Kryazhev, S.G., Prokof’ev, V.Yu., and Vasyuta, Yu.V., Application of ICP-MS in analyzing composition of oreforming fluids, Vestn. Mosk. Gos. Univ., Ser. 4. Geol., 2006, no. 4, pp, 30–36.Google Scholar
  13. Kun, L., Ruidong, Y., Wenyong, Ch., et al., Trace element and REE geochemistry of the Zhewang gold deposit, southeastern Guizhou Province, china, Chin. J. Geochem., 2014, vol. 33, pp. 109–118.CrossRefGoogle Scholar
  14. Manning, D.A.C., Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones, Chem. Geol., 1994, vol. 111, pp. 111–129.CrossRefGoogle Scholar
  15. Mineev, D.A., Lantanoidy v rudakh redkozemel’nykh i kompleksnykh mestorozhdenii (Lanthanides in Ores of the Rare-Earth and Complex Deposits), Moscow: Nauka, 1974.Google Scholar
  16. Monecke, T., Kempe, U., and Gotze, J., Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study, Geotektonika, 2002, vol. 202, pp. 709–724.Google Scholar
  17. Nikolaev, Yu.N., Prokof’ev, V.Yu., Apletalin, A.V., Vlasov, E.A., Baksheev, I.A., Kal’ko, I.A., and Komarova, Ya.S., Gold–telluride mineralization of the Western Chukchi Peninsula, Russia: mineralogy, geochemistry, and formation conditions, Geol. Ore Deposits, 2013, vol. 55, no. 2, pp. 96–124.Google Scholar
  18. Oreskes, N. and Einaudi, M.T., Origin of rare-earth element enriched hematite breccias at the Olympic Dam Cu-U-Au-Ag deposit, Roxby Downs, South Australia, Econ. Geol., 1990, vol. 85, no. 1, pp. 1–28.Google Scholar
  19. Prokof’ev, V.Yu., Volkov, A.V., Sidorov, A.A., Savva, N.E., Kolova, E.E., Uyutnov, K.V., and Byankin, M.A., Geochemical peculiarities of ore-forming fluid of the Kupol Au–Ag epithermal deposit (Northeastern Russia), Dokl. Earth Sci., 2012, vol. 447, pp. 1310–1313.CrossRefGoogle Scholar
  20. Sakhno, V.G., Barinov, N.N., Karas, O.A., et al., Petrological-geochemical isotope criteria for prediction of largevolume gold–silver ore potential of the volcanic structures of the Chukotka sector of the Arctic Russian coast, 2015. Scholar
  21. Savva, N.E., Kolova, E.E., Fomina, M.I., et al., Gold–base metal mineralization in explosive breccias: mineralogical–genetic aspects (Sentyabr’skoe deposit, NE Chukotka), Vestn. SVNTs DVO RAN, 2016, no. 1, pp. 16–36.Google Scholar
  22. Savva, N.E., Pal’yanova, G.A., Byankin, M.A., The problem of genesis of gold and silver sulfides and selenides in the Kupol deposit (Chukchi Peninsula, Russia), Russ. Geol. Geophys., 2012, vol. 53, no. 5, pp. 457–466.CrossRefGoogle Scholar
  23. Sidorov, A.A., Zoloto-serebryanaya formatsiya Vostochno-Aziatskikh vulkanogennykh poyasov (Gold–Silver Formation of the East Asian Volcanogenic Belts), Magadan, 1978.Google Scholar
  24. Teilor S.R. and S. M. McLennan, The Continental Crust: its Composition and Evolution, Oxford: Blackwell, 1985.Google Scholar
  25. Tikhomirov, P.L., Kalinina, E.A., Kobayashi, K., et al., Late Mesozoic silicic magmatism of the north Chukotka area (NE Russia): age, magma sources, and geodynamic implications, Lithos, 2008, vol. 105, pp. 329–346.CrossRefGoogle Scholar
  26. Tikhomirov, P.L. Kalinina, E.A., Moriguti, T., et al., Trace element and isotopic geochemistry of Cretaceous magmatism in NE Asia: spatial zonation, temporal evolution, and tectonic controls, Lithos, 2016, vol. 264, pp. 453–471.CrossRefGoogle Scholar
  27. Vinokurov, S.F., Europium anomalies in ore deposits and their geochemical significance, Dokl. Earth Sci., 1996, vol. 347, pp. 281–283.Google Scholar
  28. Vinokurov, S.F., Kovalenker, V.A., Safonov, Yu.G., et al., REE in quartz from epithermal gold deposits: distribution and genetic implications, Geochem. Int., 1999, vol. 37, no. 2, pp. 145–152.Google Scholar
  29. Volkov, A.V., Goncharov, V.I., and Sidorov, A.A., Mestorozhdeniya zolota i serebra Chukotki (Gold and Silver Deposits of Chukotka), Magadan: SVKNII DVO RAN, 2006.Google Scholar
  30. Volkov, A.V., Prokof’ev, V.Yu., Savva, N.E., Sidorov, A.A., Byankin, M.A., Uyutnov, K.V., and Kolova, E.E., Ore Formation at the Kupol epithermal gold–silver deposit in Northeastern Russia deduced from fluid inclusion study, Geol. Ore Deposits, 2012, vol. 54, no. 4, pp. 295–303.CrossRefGoogle Scholar
  31. Zharikov, V.A., Gorbachev, N.S., Latfutt, P., et al., Rare earth element and yttrium distribution between fluid and basaltic melt at pressures of 1–12 kbar: evidence from experimental data, Dokl. Earth Sci., 1999, vol. 366, pp. 543–545.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Volkov
    • 1
    Email author
  • N. E. Savva
    • 2
  • E. E. Kolova
    • 2
  • V. Yu. Prokofiev
    • 1
  • K. Yu. Murashov
    • 1
  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Northeast Interdisciplinary Science Research Institute, Far East BranchRussian Academy of SciencesMagadanRussia

Personalised recommendations