Russian Journal of Organic Chemistry

, Volume 55, Issue 7, pp 1013–1018 | Cite as

Cleavage of Pyrrolo[2,1-c][1,4]benzoxazine-1,2,4-triones with Thiocarbonohydrazide. Synthesis of Substituted 4-Amino-1,2,4-triazines

  • A. I. Kobelev
  • E. E. Stepanova
  • M. V. Dmitriev
  • A. N. MaslivetsEmail author


3-Acylpyrrolo[2,1-c][1,4]benzoxazine-1,2,4-triones reacted with thiocarbonohydrazide to give mixtures of 4-amino-6-(acylmethyl)-3-sulfanylidene-3,4-dihydro-1,2,4-triazin-5(2H)-ones and 6-substituted 1,4-benzoxazine-2,3-diones which can be separated by fractional crystallization directly from the reaction mixture. The reaction is likely to involve a sequence of nucleophilic transformations with intermediate formation of spiro[pyrrole-2,6′-[1,2,4]triazines] which undergo cleavage of the C2-N1 bond in the pyrrole ring. The structure of the products was determined by X-ray analysis, and intermediate products were identified by UPLC/MS. 1,2,4-Triazine derivatives can also be synthesized independently from alkyl 2,4-dioxobutanoates or 2-oxobutanedioic acid and thiocarbonohydrazide. The known procedure for the synthesis of 4-amino-1,2,4-triazines from 4-aryl-2,4-dioxobutanoic acids and thiocarbonohydrazide was improved to meet the “green chemistry” principles. Two new methods for the synthesis of substituted 4-amino-1,2,4-triazines were developed. The obtained compounds attract interest for medicinal chemistry, pharmacology, and fine organic synthesis.


1H-pyrrole-2,3-diones hetareno[e]pyrrole-2,3-diones pyrrolobenzoxazinetriones thiocarbonohydrazide 1,2,4-triazines 1,4-benzoxazine X-ray analysis 2,4-dioxobutanoic acid esters divergent synthesis green chemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was performed under financial support by the Ministry of Science and Higher Education of the Russian Federation (project no. 4.6774.2017/8.9) and by the Government of Perm Krai.


  1. 1.
    Kollenz, G., Justus Liebigs Ann. Chem., 1972, vol. 762, p. 13. doi CrossRefGoogle Scholar
  2. 2.
    Mikhailovskii, A.G., Shklyaev, V.S., and Aleksandrov, B.B., Chem. Heterocycl. Compd., 1990, vol. 26, p. 674. doi CrossRefGoogle Scholar
  3. 3.
    Mashevskaya, I.V., Makhmudov, R.R., Aleksandrova, G.A., Golovnina, O.V., Duvalov, A.V., and Maslivets, A.N., Pharm. Chem. J, 2001, vol. 35, p. 196. doi CrossRefGoogle Scholar
  4. 4.
    Bozdyreva, K.S. and Maslivets, A.N., Russ. J. Org. Chem., 2006, vol. 42, p. 463. doi CrossRefGoogle Scholar
  5. 5.
    Denislamova, E.S. and Maslivets, A.N., Russ. J. Org. Chem., 2010, vol. 46, p. 389. doi CrossRefGoogle Scholar
  6. 6.
    Mashevskaya, I.V., Suchkova, N.V., Kuslina, L.V., and Maslivets, A.N., Russ. J. Org. Chem., 2015, vol. 51, p. 1301. doi CrossRefGoogle Scholar
  7. 7.
    Dubovtsev, A.Yu., Dmitriev, M.V., Maslivets, A.N., and Rubin, M., Beilstein J.Org. Chem., 2017, vol. 13, p. 2179. doi CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kurzer, F. and Wilkinson, M., Chem. Rev, 1970, vol. 70, p. 111. doi CrossRefPubMedGoogle Scholar
  9. 9.
    Ali, T.E., J. Sulfur Chem., 2009, vol. 30, p. 611. doi au10._Wang, Q., Yang, Ya., Liu, Yu., and Wang, Z., CN Patent no. 107266380, 2017.CrossRefGoogle Scholar
  10. 11.
    Hamama, W.S., Ibrahim, M.E., Ghaith, E.A., and Zoorob, H.H., Synth. Commun, 2017, vol. 47, p. 566. doi CrossRefGoogle Scholar
  11. 12.
    Gao, J., Midde, N., Zhu, J., Terry, A.V, McInnes, C., and Chapman, J.M., Bioorg. Med. Chem. Lett., 2016, vol. 26, p. 5573. doi CrossRefPubMedPubMedCentralGoogle Scholar
  12. 13.
    Gangarapu, K., Manda, S., Jallapally, A., Thota, S., Karki, S.S., Balzarini, J., Clercq, E., and Tokuda, H., Med. Chem. Res, 2014, vol. 23, p. 1046. doi CrossRefGoogle Scholar
  13. 14.
    Kobelev, A.I., Stepanova, E.E., and Maslivets, A.N., Russ. J. Org. Chem., 2018, vol. 54, p. 1270. doi CrossRefGoogle Scholar
  14. 15.
    Konovalova, V. and Maslivets, A., Mini-Rev. Org. Chem., 2018, vol. 15, p. 1. doi Google Scholar
  15. 16.
    Andreichikov, Yu.S., Kol’tsova, S.V, Zhikina, I.A., and Nekrasov, D.D., Russ. J. Org. Chem., 1999, vol. 35, p. 1538.Google Scholar
  16. 17.
    Anastas, P.T. and Kirchhoff, M.M., Acc. Chem. Res., 2002, vol. 35, p. 686. doi CrossRefPubMedGoogle Scholar
  17. 18.
    Alfonsi, K., Colberg, J., Dunn, P.J., Fevig, T., Jennings, S., Johnson, T.A., Kleine, H.P., Knight, C., Nagy, M.A., Perry, D.A., and Stefaniak, M., Green Chem., 2008, vol. 10, p. 31. doi CrossRefGoogle Scholar
  18. 19.
    CrysAlisPro, Version (release 27-03-2014 CrysAlis171.NET), AgilentTechnologies.Google Scholar
  19. 20.
    Palatinus, L. and Chapuis, G., J. Appl. Crystallogr., 2007, vol. 40, p. 786. doi CrossRefGoogle Scholar
  20. 21.
    Sheldrick, G.M., Acta Crystallogr., Sect. C, 2015, vol. 71, p. 3. doi CrossRefGoogle Scholar
  21. 22.
    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Crystallogr., 2009, vol. 42, p. 339. doi CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. I. Kobelev
    • 1
  • E. E. Stepanova
    • 1
  • M. V. Dmitriev
    • 1
  • A. N. Maslivets
    • 1
    Email author
  1. 1.Perm State UniversityPermRussia

Personalised recommendations