Advertisement

Russian Journal of Organic Chemistry

, Volume 55, Issue 6, pp 886–889 | Cite as

A Convenient Synthetic Approach to Phenazone Derivatives Containing a 1,2,4-Triazine or Pyridine Fragment

  • I. S. Kovalev
  • M. I. Savchuk
  • D. S. Kopchuk
  • G. V. ZyryanovEmail author
  • T. A. Pospelova
  • V. L. Rusinov
  • O. N. Chupakhin
Short Communications
  • 18 Downloads

Abstract

An efficient synthetic approach to phenazone derivatives containing a 1,2,4-triazine or pyridine fragment has been proposed on the basis of successive nucleophilic substitution of hydrogen (\({\rm{S_N^H}}\)) in 1,2,4-triazine 4-oxides and aza-Diels-Alder reaction with norbornadiene as dienophile.

Keywords

phenazone nucleophilic substitution of hydrogen aza-Diels-Alder reaction 1,2,4-triazines high-pressure reactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was performed using the facilities of the “Spectroscopy and Analysis of Organic Compounds” joint center (Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences).

Funding

This study was performed under financial support by the Russian Science Foundation (project no. 18-7310119).

References

  1. 1.
    Brune, K., Acute Pain, 1997, vol. 1, p. 33. doi  https://doi.org/10.1016/S1366-0071(97)80033-2 CrossRefGoogle Scholar
  2. 2.
    Vaytas, S., Inceler, N., Mavaneh, K.F., Uludag, M.O., Abacioglu, N., and Gokce, M., Turk. J. Chem., 2012, vol. 36, p. 734. doi  https://doi.org/10.3906/kim-1111-29 Google Scholar
  3. 3.
    Mohanram, I. and Meshram, J., Int. Scholarly Res. Not., 2014, Article ID 639392. doi  https://doi.org/10.1155/2014/639392
  4. 4.
    Bondock, S., Rabie, R., Etman, H.A., and Fadda, A.A., Eur. J. Med. Chem., 2008, vol. 43, p. 2122. doi  https://doi.org/10.1016/j.ejmech.2007.12.009 CrossRefGoogle Scholar
  5. 5.
    Al-Rawi, M.S., Hassan, H.A., and Hassan, D.F., Iraqi Natl. J. Chem., 2017, no. 2, p. 140.Google Scholar
  6. 6.
    Ghorab, M.M., El-Gazzar, M.G., and Alsaid, M.S., Int. J. Mol. Sci., 2014, vol. 15, p. 7539. doi  https://doi.org/10.3390/ijms15057539 CrossRefGoogle Scholar
  7. 7.
    Alam, M.S., Lee, D.-U., and Bari, Md.L., J. Korean Soc. Appl. Biol. Chem., 2014, vol. 57, p. 613. doi  https://doi.org/10.1007/s13765-014-4201-2 CrossRefGoogle Scholar
  8. 8.
    Schneider, I. and Elstner, E.F., Z. Naturforsch., Teil C, 1993, vol. 48, p. 542.CrossRefGoogle Scholar
  9. 9.
    Al-Matar, H.M., Khalil, K.D., Al-Kanderi, M.F., and Elnagdi, M.H., Molecules, 2012, vol. 17, p. 897. doi  https://doi.org/10.3390/molecules17010897 CrossRefGoogle Scholar
  10. 10.
    Klosa, J., Arch. Pharm., 1955, vol. 288, p. 217. doi  https://doi.org/10.1002/ardp.19552880503 CrossRefGoogle Scholar
  11. 11.
    Arcadi, A., Di Giuseppe, S., Marinelli, F., and Rossi, E., Adv. Synth. Catal., 2001, vol. 343, p. 443. doi  https://doi.org/10.1002/1615-4169(200107)343:5<443::AID-ADSC443>3.0.CO;2-# CrossRefGoogle Scholar
  12. 12.
    Gong, H., Yang, Y., Wang, Z., and Kuang, C., Beilstein J. Org. Chem., 2013, vol. 9, p. 2033. doi  https://doi.org/10.3762/bjoc.9.240 CrossRefGoogle Scholar
  13. 13.
    Adak, L. and Yoshikai, N., J. Org. Chem., 2011, vol. 76, p. 7563. doi  https://doi.org/10.1021/jo201174r CrossRefGoogle Scholar
  14. 14.
    Rusinov, V.L., Kovalev, I.S., Kozhevnikov, D.N., Ustinova, M.M., Chupakhin, O.N., Pokrovskii, A.G., Ilicheva, T.N., Belanov, E.F., Bormotov, N.I., Serova, O.A., and Volkov, G.N., Pharm. Chem. J., 2005, vol. 39, p. 630. doi  https://doi.org/10.1007/s11094-006-0034-6 CrossRefGoogle Scholar
  15. 15.
    Hamana, M. and Noda, H., Chem. Pharm. Bull., 1967, vol. 15, p. 1380. doi  https://doi.org/10.1248/cpb.15.1380 CrossRefGoogle Scholar
  16. 16.
    Sheinkman, A.K., Stupnikova, T.V., Zherebchenko, V.I., and Klyuev, N.A., Chem. Heterocycl. Compd., 1977, vol. 13, p. 1118. doi  https://doi.org/10.1007/BF00480150 CrossRefGoogle Scholar
  17. 17.
    Sheinkman, A.K., Deikalo, A.A., Stupnikova, T.V., and Baranov, S.N., Chem. Heterocycl. Compd., 1972, vol. 8, p. 260. doi  https://doi.org/10.1007/BF00472375 CrossRefGoogle Scholar
  18. 18.
    Ishihara, Y., Ito, T., Saito, H., and Takano, J., J. Heterocycl. Chem., 2005, vol. 42, p. 963. doi  https://doi.org/10.1002/jhet.5570420533 CrossRefGoogle Scholar
  19. 19.
    Zhdanov, Yu.A., Zvezdina, E.A., Statsenko, S.M., and Maksimova, A.N., Chem. Heterocycl. Compd., 1987, vol. 23, p. 149. doi  https://doi.org/10.1007/BF00663851 CrossRefGoogle Scholar
  20. 20.
    Kumar, R., Sirohi, T.S., Singh, H., Yadav, R., Roy, R.K., Chaudhary, A., and Pandeya, S.N., Mini-Rev. Med. Chem., 2014, vol. 14, p. 168. doi  https://doi.org/10.2174/1389557514666140131111837 CrossRefGoogle Scholar
  21. 21.
    Kozhevnikov, D.N., Kovalev, I.S., Prokhorov, A.M., Rusinov, V.L., and Chupakhin, O.N., Russ. Chem. Bull., In. Ed., 2003, vol. 52, p. 1588. doi  https://doi.org/10.1023/A:1025601311393 CrossRefGoogle Scholar
  22. 22.
    Kozhevnikov, D.N., Kovalev, I.S., Rusinov, V.L., and Chupakhin, O.N., Chem. Heterocycl. Compd., 2001, vol. 37, p. 1136. doi  https://doi.org/10.1023/A:1013287918408 CrossRefGoogle Scholar
  23. 23.
    Kozhevnikov, D.N. and Prokhorov, A.M., Chem. Heterocycl. Compd., 2012, vol. 48, p. 1153. doi  https://doi.org/10.1007/s10593-012-1117-9 CrossRefGoogle Scholar
  24. 24.
    Pabst, G.R., Pfuller, O.C., and Sauer, J., Tetrahedron, 1999, vol. 55, p. 8045. doi  https://doi.org/10.1016/S0040-4020(99)00422-6 CrossRefGoogle Scholar
  25. 25.
    Rykowski, A., Branowska, D., and Kielak, J., Tetrahedron Lett., 2000, vol. 41, p. 3657. doi  https://doi.org/10.1016/S0040-4039(00)00436-6 CrossRefGoogle Scholar
  26. 26.
    Kozhevnikov, D.N., Kozhevnikov, V.N., Prokhorov, A.M., Ustinova, M.M., Rusinov, V.L., Chupakhin, O.N., Aleksandrov, G.G., and Köenig, B., Tetrahedron Lett., 2006, vol. 47, p. 869. doi  https://doi.org/10.1016/j.tetlet.2005.12.006 CrossRefGoogle Scholar
  27. 27.
    Kovalev, I.S., Kopchuk, D.S., Khasanov, A.F., Zyryanov, G.V., Rusinov, V.L., and Chupakhin, O.N., Mendeleev Commun., 2014, vol. 24, p. 117. doi  https://doi.org/10.1016/j.mencom.2014.03.018 CrossRefGoogle Scholar
  28. 28.
    Kopchuk, D.S., Krinochkin, A.P., Starnovskaya, E.S., Shtaitz, Y.K., Khasanov, A.F., Taniya, O.S., Santra, S., Zyryanov, G.V., Majee, A., Rusinov, V.L., and Chupakhin, O.N., ChemistrySelect, 2018, vol. 3, p. 4141. doi  https://doi.org/10.1002/slct.201800220 CrossRefGoogle Scholar
  29. 29.
    Kumar, N.S., Shafikov, M.Z., Whitwood, A.C., Donnio, B., Karadakov, P.B., Kozhevnikov, V.N., and Bruce, D.W., Chem. Eur. J., 2016, vol. 22, p. 8215. doi  https://doi.org/10.1002/chem.201505072 CrossRefGoogle Scholar
  30. 30.
    Krayushkin, M.M., Sedishev, I.P., Yarovenko, V.N., Zavarzin, I.V., Kotovskaya, S.K., Kozhevnikov, D.N., and Charushin, V.N., Russ. J. Org. Chem., 2008, vol. 44, p. 407. doi  https://doi.org/10.1134/S1070428008030160 CrossRefGoogle Scholar
  31. 31.
    Savchuk, M.I., Starnovskaya, E.S., Shtaitz, Y.K., Kopchuk, D.S., Nosova, E.V., Zyryanov, G.V., Rusinov, V.L., and Chupakhin, O.N., Russ. J. Gen. Chem., 2018, vol. 88, p. 2213. doi  https://doi.org/10.1134/S1070363218100316 CrossRefGoogle Scholar
  32. 32.
    Kozhevnikov, D.N., Kozhevnikov, V.N., Rusinov, V.L., Chupakhin, O.N., Sidorov, E.O., and Klyuev, N.A., Russ. J. Org. Chem., 1998, vol. 34, p. 393.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. S. Kovalev
    • 1
  • M. I. Savchuk
    • 1
  • D. S. Kopchuk
    • 1
    • 2
  • G. V. Zyryanov
    • 1
    • 2
    Email author
  • T. A. Pospelova
    • 1
  • V. L. Rusinov
    • 1
    • 2
  • O. N. Chupakhin
    • 1
    • 2
  1. 1.Yeltsin Ural Federal UniversityYekaterinburgRussia
  2. 2.Postovskii Institute of Organic Synthesis, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations