Advertisement

Russian Journal of Organic Chemistry

, Volume 55, Issue 6, pp 879–882 | Cite as

Synthesis of 2-Substituted 6-(Polyfluoromethyl)pyrimidine-4-carbaldehyde Acetals

  • D. V. Belyaev
  • D. L. ChizhovEmail author
  • G. L. Rusinov
  • V. N. Charushin
Short Communications
  • 17 Downloads

Abstract

Heterocyclization of 5,5-difluoro- and 5,5,5-trifluoro-2,4-dioxopentanal dimethyl acetals with amidines in the presence of 4 equiv of triethyl borate afforded 2-substituted 6-(difluoromethyl)- and 6-(trifluoromethyl)pyrimidine-4-carbaldehyde dimethyl acetals in high yields.

Keywords

fluorinated pyrimidines carbaldehydes amidines acetals triethyl borate 1,3-diketones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The analytical and spectral data were obtained using the facilities of the “Spectroscopy and Analysis of Organic Compounds” joint center (Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences).

Funding

This study was performed under financial support by the Russian Science Foundation (project no. 19-1300234).

References

  1. 1.
    Brown, D.J., The Pyrimidines (The Chemistry of Heterocyclic Compounds, volume 52), Taylor, E.C., Ed., New York: Wiley, 1994, p. 1509.Google Scholar
  2. 2.
    Lagoja, I.M., Chem. Biodiversity, 2005, vol. 2, p. 1. doi  https://doi.org/10.1002/cbdv.200490173 CrossRefGoogle Scholar
  3. 3.
    Koroleva, E.V., Ignatovich, Zh.I., Sinyutich, Yu.V., and Gusak, K.N., Russ. J. Org. Chem., 2016, vol. 52, p. 139. doi  https://doi.org/10.1134/S1070428016020019 CrossRefGoogle Scholar
  4. 4.
    Kumar, S. and Narasimhan, B., Chem. Cent. J., 2018, vol. 12, p. 38. doi  https://doi.org/10.1186/s13065-018-0406-5 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Merugu, R., Garimella, S., Balla, D., and Sambaru, K., Int. J. PharmTech Res. 2015, 6, 88. doi  https://doi.org/10.1002/chin.201629252 Google Scholar
  6. 6.
    Gu, S.-X., Lu, H.-H., Liu, G.-Y., Ju, X.-L., and Zhu, Y.-Y., Eur. J. Med. Chem., 2018, vol. 158, p. 371. doi  https://doi.org/10.1016/j.ejmech.2018.09.013 CrossRefPubMedGoogle Scholar
  7. 7.
    Singh, K. and Kaur, T., Med. Chem. Commun., 2016, vol. 7, p. 749 doi  https://doi.org/10.1039/C6MD00084C CrossRefGoogle Scholar
  8. 8.
    Cavaliere, A., Probst, K.C., Westwell, A.D., and Slusarczyk, M., Future Med. Chem., 2017, vol. 9, p. 15. doi  https://doi.org/10.4155/fmc-2017-0095 CrossRefGoogle Scholar
  9. 9.
    Abdellatif, K.R.A. and Bakr, R.B., Bioorg. Chem., 2018, vol. 78, p. 341. doi  https://doi.org/10.1016/j.bioorg.2018.03.032 CrossRefPubMedGoogle Scholar
  10. 10.
    Zanatta, N., Amaral, S.S., Santos, J.M., Mello, D.L., Fernandes, L.S., Bonacorso, H.G., Martins, M.A.P., Andricopulo, A.D., and Borchhardt, D.M., Bioorg. Med. Chem., 2008, vol. 16, p. 10236. doi  https://doi.org/10.1016/j.bmc.2008.10.052 CrossRefPubMedGoogle Scholar
  11. 11.
    Petrov, V.A., Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications, Petrov, V.A., Ed., Hoboken, NJ: Wiley, 2009, p. 273.Google Scholar
  12. 12.
    Volochnyuk, D.M., Grygorenko, O.O., and Gorlova, A.O., Fluorine in Heterocyclic Chemistry, Nenajdenko, V., Ed., Cham (Switzerland): Springer, 2014, vol. 2, p. 291.Google Scholar
  13. 13.
    Isakova, V.G., Khlebnikova, T.S., and Lakhvich, F.A., Russ. Chem. Rev., 2010, vol. 79, p. 849. doi  https://doi.org/10.1070/RC2010v079n10ABEH004123 CrossRefGoogle Scholar
  14. 14.
    Kremlev, M.M., Mushta, A.I., Tyrra, W., Yagupolskii, Y.L., Naumann, D., and Möller, A., J. Fluorine Chem., 2012, vol. 133, p. 67. doi  https://doi.org/10.1016/j.jfluchem.2011.07.025 CrossRefGoogle Scholar
  15. 15.
    Le, C., Chen, T.Q., Liang, T., Zhang, P., and Mac-Millan, D.W.C., Science, 2018, vol. 360, p. 1010. doi  https://doi.org/10.1126/science.aat4133 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Malherbe, P., Masciadri, R., Prinssen, E., Spooren, W., and Thomas, A.W., US Patent Appl. no. 2005O197337 A1, 2005.Google Scholar
  17. 17.
    Chizhov, D.L., Belyaev, D.V., Yachevskii, D.S., Rusinov, G.L., Chupakhin, O.N., and Charushin, V.N., J. Fluorine Chem., 2017, vol. 199, p. 39. doi  https://doi.org/10.1016/j.jfluchem.2017.04.009 CrossRefGoogle Scholar
  18. 18.
    Chizhov, D.L., Pervova, M.G., Samorukova, M.A., Khmara, E.F., Filyakova, V.I., Saloutin, V.I., and Charushin, V.N., J. Fluorine Chem., 2011, vol. 132, p. 394. doi  https://doi.org/10.1016/j.jfluchem.2011.03.018 CrossRefGoogle Scholar
  19. 19.
    Zhilina, E.F., Slepukhin, P.A., Boltacheva, N.S., Pervova, M.G., Chizhov, D.L., Filyakova, V.I., and Charushin, V.N., Russ. J. Gen. Chem., 2012, vol. 82, p. 1962. doi  https://doi.org/10.1134/S1070363212120092 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. V. Belyaev
    • 1
  • D. L. Chizhov
    • 1
    Email author
  • G. L. Rusinov
    • 1
    • 2
  • V. N. Charushin
    • 1
    • 2
  1. 1.Postovskii Institute of Organic Synthesis, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Yeltsin Ural Federal UniversityYekaterinburgRussia

Personalised recommendations