Advertisement

Russian Journal of Organic Chemistry

, Volume 55, Issue 6, pp 837–844 | Cite as

Nonracemic Dimethylphenyl Glycerol Ethers in the Synthesis of Physiologically Active Aminopropanols

  • Z. A. BredikhinaEmail author
  • A. V. Kurenkov
  • A. A. Bredikhin
Review
  • 12 Downloads

Abstract

Six regioisomeric nonracemic dimethylphenyl glycerol ethers were synthesized by asymmetric dihydroxylation of the corresponding allyl dimethylphenyl ethers. The enantioselectivity of the reaction with o-methyl derivatives was lower (down to 34% ee) than with m-methylphenyl ethers (up to 86% ee). Enantiomeric 3-(3,4-dimethylphenoxy)propane-1,2-diols were used to obtain enantiomerically pure physiologically active amino alcohols and their derivatives.

Keywords

asymmetric dihydroxylation glycerol ethers enantiopure aminopropanols 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank the Joint Spectral and Analytical Center (Kazan Scientific Center, Russian Academy of Sciences) for technical support of this study.

References

  1. 1.
    Murakami, H., Top. Curr. Chem., 2007, vol. 269, p. 273. doi  https://doi.org/10.1007/s128_2006_072 CrossRefGoogle Scholar
  2. 2.
    Calcaterra, A. and D’Acquarica, I., J. Pharm. Biomed. Anal., 2018, vol. 147, p. 323. doi  https://doi.org/10.1016/j.jpba.2017.07.008 CrossRefGoogle Scholar
  3. 3.
    Berger, F.M., Hubbard, C.V., and Ludwig, B.J., Appl. Microbiol., 1953, vol. 1, p. 146.Google Scholar
  4. 4.
    Hansch, C. and Lien, E.J., J. Med. Chem., 1971, vol. 14, p. 653. doi  https://doi.org/10.1021/jm00290a001 CrossRefGoogle Scholar
  5. 5.
    The Merck Index, O’Neil, M.J., Ed., Whitehouse Station, NJ, USA: Merck, 2006, 14th ed., entries 2178 (a), 4555(b), 5850(c).Google Scholar
  6. 6.
    Agustian, J., Kamaruddin, A.H., and Bhatia, S., Process Biochem., 2010, vol. 45, p. 1587. doi  https://doi.org/10.1016/j.procbio.2010.06.022 CrossRefGoogle Scholar
  7. 7.
    Saddique, F.A., Zahoor, A.F., Yousaf, M., Irfan, M., Ahmad, M., Mansha, A., Khan, Z.A., and Naqvi, S.A.R., Turk. J. Chem., 2016, vol. 40, p. 193. doi  https://doi.org/10.3906/kim-1504-65 CrossRefGoogle Scholar
  8. 8.
    Bredikhin, A.A. and Bredikhina, Z.A., Chem. Eng. Technol., 2017, vol. 40, p. 1211. doi  https://doi.org/10.1002/ceat.201600649 CrossRefGoogle Scholar
  9. 9.
    Campo, C., Llama, E.F., Bermudez, J.L., and Sinisterra, J.V., Biocatal. Biotransform., 2001, vol. 19, p. 163. doi  https://doi.org/10.3109/10242420109105262 CrossRefGoogle Scholar
  10. 10.
    Bredikhina, Z.A., Kurenkov, A.V., Krivolapov, D.B., and Bredikhin, A.A., Tetrahedron: Asymmetry, 2015, vol. 26, p. 577. doi  https://doi.org/10.1016/j.tetasy.2015.04.005 CrossRefGoogle Scholar
  11. 11.
    Bredikhin, A.A., Bredikhina, Z.A., Kurenkov, A.V., and Gubaidullin, A.T., Tetrahedron: Asymmetry, 2017, vol. 28, p. 1359. doi  https://doi.org/10.1016/j.tetasy.2017.08.013 CrossRefGoogle Scholar
  12. 12.
    Bredikhin, A.A., Zakharychev, D.V., Gubaidullin, A.T., and Bredikhina, Z.A., Cryst. Growth Des, 2018, vol. 18, p. 6627. doi  https://doi.org/10.1021/acs.cgd.8b00874 CrossRefGoogle Scholar
  13. 13.
    Hothersall, J.D., Black, J., Caddick, S., Vinter, J.G., Tinker, A., and Baker, J.R., Br. J. Pharmacol., 2011, vol. 164, p. 317. doi  https://doi.org/10.1111/j.1476-5381.2011.01269.x CrossRefGoogle Scholar
  14. 14.
    Araujo, N., Ferreira da Silva, A., Qing, Y., Lifino, M., Russell, A.J., Small, B., Wade-Martins, R., and Wynne, G.M., Int. Patent Appl. no. WO 2015/004485 A1, 2015.Google Scholar
  15. 15.
    Nelson, W.L., Wennerstrom, J.E., and Sankar, S.R., J. Org. Chem., 1977, vol. 42, p. 1006. doi  https://doi.org/10.1021/jo00426a016 CrossRefGoogle Scholar
  16. 16.
    Bredikhin, A.A., Zakharychev, D.V., Bredikhina, Z.A., Kurenkov, A.V., Krivolapov, D.B., and Gubaidullin, A.T., Cryst. Growth Des., 2017, vol. 17, p. 4196. doi  https://doi.org/10.1021/acs.cgd.7b00510 CrossRefGoogle Scholar
  17. 17.
    Zaitsev, A.B. and Adolfsson, H., Synthesis, 2006, no. 11, p. 1725. doi  https://doi.org/10.1055/s-2006-942378
  18. 18.
    Heravi, M.M., Zadsirjan, V., Esfandyari, M., and Lashaki, T.B., Tetrahedron: Asymmetry, 2017, vol. 28, p. 987. doi  https://doi.org/10.1016/j.tetasy.2017.07.004 CrossRefGoogle Scholar
  19. 19.
    Wang, Z.M., Zhang, X.L., and Sharpless, K.B., Tetrahedron Lett., 1993, vol. 34, p. 2267. doi  https://doi.org/10.1016/S0040-4039(00)77590-3 CrossRefGoogle Scholar
  20. 20.
    Bredikhina, Z.A., Kurenkov, A.V., Antonovich, O.A., Pashagin, A.V., and Bredikhin, A.A., Tetrahedron: Asymmetry, 2014, vol. 25, p. 1015. doi  https://doi.org/10.1016/j.tetasy.2014.05.008 CrossRefGoogle Scholar
  21. 21.
    Byun, H.S., He, L.L., and Bittman, R., Tetrahedron, 2000, vol. 56, p. 7051. doi  https://doi.org/10.1016/s0040-4020(00)00494-4 CrossRefGoogle Scholar
  22. 22.
    Bredikhina, Z.A., Savel’ev, D.V., and Bredikhin, A.A., Russ. J. Org. Chem., 2002, vol. 38, p. 213. doi  https://doi.org/10.1023/A:1015561532507 CrossRefGoogle Scholar
  23. 23.
    Swamy, K.C.K., Kumar, N.N.B., Balaraman, E., and Kumar, K., Chem. Rev., 2009, vol. 109, p. 2551. doi  https://doi.org/10.1021/cr800278z CrossRefGoogle Scholar
  24. 24.
    Ludwig, B.J., West, W.A., and Currie, W.E., J. Am. Chem. Soc., 1952, vol. 74, p. 1935. doi  https://doi.org/10.1021/ja01128a019 CrossRefGoogle Scholar
  25. 25.
    Yale, H.L., Pribyl, E.J., Braker, W., Bergeim, F.H., and Lott, W.A., J. Am. Chem. Soc., 1950, vol. 72, p. 3710. doi  https://doi.org/10.1021/ja01164a107 CrossRefGoogle Scholar
  26. 26.
    Sayyed, I.A., Thakur, V.V., Nikalje, M.D., Dewkar, G.K., Kotkar, S.P., and Sudalai, A., Tetrahedron, 2005, vol. 61, p. 2831. doi  https://doi.org/10.1016/j.tet.2005.01.074 CrossRefGoogle Scholar
  27. 27.
    Polaske, N.W., Szalai, M.L., Shanahan, C.S., and McGrath, D.V., Org. Lett., 2010, vol. 12, p. 4944. doi  https://doi.org/10.1021/ol102081q CrossRefGoogle Scholar
  28. 28.
    Trivedi, R. and Tunge, J.A., Org. Lett., 2009, vol. 11, p. 5650. doi  https://doi.org/10.1021/ol902291z CrossRefGoogle Scholar
  29. 29.
    Clark, R.J., Isaacs, A., and Walker, J., Br. J. Pharmacol., 1958, vol. 13, p. 424. doi  https://doi.org/10.1111/j.1476-5381.1958.tb00233.x Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Z. A. Bredikhina
    • 1
    Email author
  • A. V. Kurenkov
    • 1
  • A. A. Bredikhin
    • 1
  1. 1.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific CenterRussian Academy of SciencesKazan, TatarstanRussia

Personalised recommendations