Russian Journal of Organic Chemistry

, Volume 55, Issue 6, pp 824–830 | Cite as

Mass Spectra of New Heterocycles: XIX. Electron Impact and Chemical Ionization Study of 2,7-Dihydrothiopyrano[2,3-b]pyrrol-6-amines

  • L. V. KlybaEmail author
  • N. A. Nedolya
  • E. R. Sanzheeva
  • O. A. Tarasova


Fragmentation of N, N-dialkyl-7-[alkyl and 2-(vinyloxy)ethyl]-2,7-dihydrothiopyrano[2,3-b]pyrrol-6-amines under electron impact (70 eV) and chemical ionization (methane as reactant gas) has been studied. The electron impact ionization of these compounds gives rise to stable molecular ions which decompose according to two main pathways. The major pathway involves cleavage of the N7—CAlk bond with elimination of the alkyl radical. The minor pathway is expulsion of alkyl radical from the amino nitrogen atom in the 6-position. The chemical ionization of 2,7-dihydrothiopyrano[2,3-b]pyrrol-6-amines characteristically involves protonation and electrophilic addition processes with the most abundant ion being [M + H]+.


N,N-dialkyl-7-[alkyl and 2-(vinyloxy)ethyl]-2,7-dihydrothiopyrano[2,3-b]pyrrol-6-amines mass spectra electron impact and chemical ionization fragmentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was performed using the equipment of the Baikal Joint Analytical Center, Siberian Branch, Russian Academy of Sciences.


  1. 1.
    Klyba, L.V, Nedolya, N.A., Sanzheeva, E.R., and Tarasova, O.A., Russ. J. Org. Chem., 2019, vol. 55, p. 518. doi CrossRefGoogle Scholar
  2. 2.
    Comprehensive Heterocyclic Chemistry III, Katritzky, A.R., Ramsden, C.A., Scriven, E.F.V., and Taylor, R.J.K., Eds., Amsterdam: Elsevier, 2008, vol. 3, p. 3. doi Google Scholar
  3. 3.
    Joshi, S.D., More, U.A., Kulkarni, V.H., and Aminabhavi, T.M., Curr. Org. Chem., 2013, vol. 17, p. 2279. doi CrossRefGoogle Scholar
  4. 4.
    Black, D.St.C., Science of Synthesis. Hetarenes and Related Ring Systems, Maas, G., Ed., Stuttgart: Thieme, 2001, vol. 9, p. 441. doi
  5. 5.
    Ingall, A.H., Comprehensive Heterocyclic Chemistry II, Katritzky, A.R., Rees, C.W., and Scriven, E.F.V., Eds., Oxford: Pergamon, 1996, vol. 5, p. 501.Google Scholar
  6. 6.
    Hepworth, J.D. and Heron, B.M., Comprehensive Heterocyclic Chemistry III, Katritzky, A.R., Ramsden, C.A., Scriven, E.F.V., and Taylor, R.J.K., Eds., Amsterdam: Elsevier, 2008, vol. 7, p. 727.Google Scholar
  7. 7.
    Chowdhury, S., Chanda, T., Koley, S., Ramulu, B.J., Raghuvanshi, K., and Singh, M.S., Tetrahedron, 2014, vol. 70, p. 914. doi CrossRefGoogle Scholar
  8. 8.
    Adhikary, N.D., Kwon, S., Chung, W.-J., and Koo, S., J. Org. Chem., 2015, vol. 80, p. 7693. doi CrossRefPubMedGoogle Scholar
  9. 9.
    Forte, B., Malgesini, B., Piutti, C., Quartieri, F., Scolaro, A., and Papeo, G., Mar. Drugs, 2009, vol. 7, p. 705. doi CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fitzgerald, M.A., Soltani, O., Wei, C., Skliar, D., Zheng, B., Li, J., Albrecht, J., Schmidt, M., Mahoney, M., Fox, R.J., Tran, K., Zhu, K., and Eastgate, M.D., J. Org. Chem., 2015, vol. 80, p. 6001. doi CrossRefPubMedGoogle Scholar
  11. 11.
    Wu, L., Wang, Y., Song, H., Tang, L., Zhou, Z., and Tang, C., Adv. Synth. Catal., 2013, vol. 355, p. 1053. doi CrossRefGoogle Scholar
  12. 12.
    Singh, B., Chandra, A., Asthana, M., and Singh, R.M., Tetrahedron Lett., 2012, vol. 53, p. 3242. doi CrossRefGoogle Scholar
  13. 13.
    Jha, M., Shelke, G.M., Cameron, T.S., and Kumar, A., J. Org. Chem., 2015, vol. 80, p. 5272. doi CrossRefPubMedGoogle Scholar
  14. 14.
    Majumdar, K.C., Ponra, S., and Ghosh, T., RSC Adv., 2012, vol. 2, p. 1144. doi CrossRefGoogle Scholar
  15. 15.
    Baumann, M., Baxendale, I.R., Ley, S.V., and Ni, N., Beilstein J. Org. Chem., 2011, vol. 7, p. 442. doi CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Huffman, J.W., The Cannabinoid Receptors, Reggio, P.H., Ed., Humana Press, 2009, p. 49. doi
  17. 17.
    Brachet, E. and Belmont, P., J. Org. Chem., 2015, vol. 80, p. 7519. doi CrossRefPubMedGoogle Scholar
  18. 18.
    Kappelle, P.J.W.H., Dallinga-Thie, G.M., and Dullaart, R.P.F., Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 2010, vol. 1801, p. 89. doi CrossRefGoogle Scholar
  19. 19.
    La Regina, G., Silvestri, R., Artico, M., Lavecchia, A., Novellino, E., Befani, O., Turini, P., and Agostinelli, E., J. Med. Chem., 2007, vol. 50, p. 922. doi CrossRefPubMedGoogle Scholar
  20. 20.
    Gupton, J., Heterocyclic Antitumor Antibiotics (Topics in Heterocyclic Chemistry, vol. 2), Lee, M., Ed., Berlin: Springer, 2006, p. 53. doi
  21. 21.
    Heinze, J., Frontana-Uribe, B.A., and Ludwigs, S., Chem. Rev., 2010, vol. 110, p. 4724. doi CrossRefPubMedGoogle Scholar
  22. 22.
    Loudet, A. and Burgess, K., Chem. Rev., 2007, vol. 107, p. 4891. doi CrossRefPubMedGoogle Scholar
  23. 23.
    Li, H., Lambert, C., and Stahl, R., Macromolecules, 2006, vol. 39, p. 2049. doi CrossRefGoogle Scholar
  24. 24.
    Berlin, A., Pagani, G.A., Schiavon, G., and Zotti, G., J. Chem. Soc., Perkin Trans. 2, 1990, p. 699. doi CrossRefGoogle Scholar
  25. 25.
    Kochanowska-Karamyan, A.J. and Hamann, M.T., Chem. Rev., 2010, vol. 110, p. 4489. doi CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yeung, K.-S., Qiu, Z., Xue, Q., Fang, H., Yang, Z., Zadjura, L., D’Arienzo, C.J., Eggers, B.J., Riccardi, K., Shi, P.-Y., Gong, Y.-F., Browning, M.R., Gao, Q., Hansel, S., Santone, K., Lin, P.-F., Meanwell, N.A., and Kadow, J.F., Bioorg. Med. Chem. Lett., 2013, vol. 23, p. 198. doi CrossRefPubMedGoogle Scholar
  27. 27.
    Shiri, M., Chem. Rev., 2012, vol. 112, p. 3508. doi CrossRefPubMedGoogle Scholar
  28. 28.
    Valentine, R.A., Whyte, A., Awaga, K., and Robertson, N., Tetrahedron Lett., 2012, vol. 53, p. 657. doi CrossRefGoogle Scholar
  29. 29.
    Gaumont, A.-C., Gulea, M., and Levillain, J., Chem. Rev., 2009, vol. 109, p. 1371. doi CrossRefPubMedGoogle Scholar
  30. 30.
    Adams, A. and De Kimpe, N., Chem. Rev., 2006, vol. 106, p. 2299. doi CrossRefPubMedGoogle Scholar
  31. 31.
    Takada, S. and Makisumi, Y., Chem. Pharm. Bull., 1984, vol. 32, p. 872. doi CrossRefGoogle Scholar
  32. 32.
    Gokou, C.T., Pradère, J.-P., Quiniou, H., and Toupet, L., J. Chem. Soc., Perkin. Trans. 1, 1985, p. 1875. doi CrossRefGoogle Scholar
  33. 33.
    Gabbutt, C.D., Hepworth, J.D., and Heron, B.M., J. Chem. Res., Synop., 1997, p. 102. doi
  34. 34.
    Majumdar, K.C., Debnath, P., Alam, S., and Maji, P.K., Tetrahedron Lett., 2007, vol. 48, p. 7031. doi CrossRefGoogle Scholar
  35. 35.
    Shivendra, S. and Sampak, S., Chin. J. Chem., 2015, vol. 33, p. 1244. doi CrossRefGoogle Scholar
  36. 36.
    Grigor’eva, A.I., Lebedeva, G.K., Snegireva, L.P., and Kvitko, I.Ya., Zh. Org. Khim., 1978, vol. 14, p. 637.Google Scholar
  37. 37.
    Trofimov, B.A., Nedolya, N.A., Tarasova, O.A., Sobenina, L.N., Petrova, O.V., Sagitova, E.F., and Albanov, A.I., J. Sulfur Chem., 2015, vol. 36, p. 630. doi CrossRefGoogle Scholar
  38. 38.
    Nedolya, N.A., Tarasova, O.A., Albanov, A.I., and Trofimov, B.A., Synthesis, 2016, vol. 48, p. 4278. doi CrossRefGoogle Scholar
  39. 39.
    Marcotte, F.-A. and Lubell, W.D., Org. Lett., 2002, vol. 4, p. 2601. doi CrossRefPubMedGoogle Scholar
  40. 40.
    Montalbano, A., Parrino, B., Diana, P., Barraja, P., Carbone, A., Spano, V., and Cirrincione, G., Tetrahedron, 2013, vol. 69, p. 2550. doi CrossRefGoogle Scholar
  41. 41.
    Brown, M.J., Carter, P.S., Fenwick, A.E., Fosberry, A.P., Hamprecht, D.W., Hibbs, M.J., Jarvest, R.L., Mensah, L., Milner, P.H., O’Hanlon, P.J., Pope, A.J., Richardson, C.M., West, A., and Witty, D.R., Bioorg. Med. Chem. Lett., 2002, vol. 12, p. 3171. doi CrossRefPubMedGoogle Scholar
  42. 42.
    Quaglia, W., Pigini, M., Piergentili, A., Giannella, M., Gentili, F., Marucci, G., Carrieri, A., Poggesi, E., Leonardi, A., and Melchiorre, C.J., J. Med. Chem., 2002, vol. 45, p. 1633. doi CrossRefPubMedGoogle Scholar
  43. 43.
    Van Vliet, L.A., Rodenhuis, N., Dijkstra, D., Wikstrom, H., Pugsley, T.A., Serpa, K.A., Meltzer, L.T., Heffner, T.G., Wise, L.D., and Lajiness, M.E., J. Med. Chem., 2000, vol. 43, p. 2871. doi CrossRefPubMedGoogle Scholar
  44. 44.
    Wang, W., Li, H., Wang, J., and Zu, L.S., J. Am. Chem. Soc., 2006, vol. 128, p. 10354. doi CrossRefPubMedGoogle Scholar
  45. 45.
    Sugita, Y., Hosoya, H., Terasawa, K., Yokoe, I., Fijisawa, S., and Sakagami, H., Anticancer Res., 2001, vol. 21, p. 2629.PubMedGoogle Scholar
  46. 46.
    Klyba, L.V., Nedolya, N.A., Tarasova, O.A., and Sanzheeva, E.R., Russ. J. Org. Chem., 2013, vol. 49, p. 384. doi: CrossRefGoogle Scholar
  47. 47.
    Klyba, L.V., Nedolya, N.A., Tarasova, O.A., and Sanzheeva, E.R., Russ. J. Org. Chem., 2014, vol. 50, p. 35. doi: CrossRefGoogle Scholar
  48. 48.
    Klyba, L.V., Nedolya, N.A., Tarasova, O.A., Zhanchipova, E.R., and Volostnykh, O.G., Russ. J. Org. Chem., 2010, vol. 46, p. 1038. doi: CrossRefGoogle Scholar
  49. 49.
    Klyba, L.V., Tarasova, O.A., Nedolya, N.A., and Sanzheeva, E.R., Russ. J. Org. Chem., 2016, vol. 52, p. 1587. doi: CrossRefGoogle Scholar
  50. 50.
    Klyba, L.V., Tarasova, O.A., and Nedolya, N.A., Russ. J. Org. Chem., 2016, vol. 52, p. 1773. doi: CrossRefGoogle Scholar
  51. 51.
    Vul’fson, N.S., Zaikin, V.G., and Mikaya, A.I., Mass-spektrometriya organicheskikh soedinenii (Mass Spectrometry of Organic Compounds), Moscow: Khimiya, 1986, p. 28.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. V. Klyba
    • 1
    Email author
  • N. A. Nedolya
    • 1
  • E. R. Sanzheeva
    • 1
  • O. A. Tarasova
    • 1
  1. 1.Favorskii Irkutsk Institute of Chemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations