Advertisement

Russian Journal of Organic Chemistry

, Volume 55, Issue 6, pp 824–830 | Cite as

Mass Spectra of New Heterocycles: XIX. Electron Impact and Chemical Ionization Study of 2,7-Dihydrothiopyrano[2,3-b]pyrrol-6-amines

  • L. V. KlybaEmail author
  • N. A. Nedolya
  • E. R. Sanzheeva
  • O. A. Tarasova
Review
  • 9 Downloads

Abstract

Fragmentation of N, N-dialkyl-7-[alkyl and 2-(vinyloxy)ethyl]-2,7-dihydrothiopyrano[2,3-b]pyrrol-6-amines under electron impact (70 eV) and chemical ionization (methane as reactant gas) has been studied. The electron impact ionization of these compounds gives rise to stable molecular ions which decompose according to two main pathways. The major pathway involves cleavage of the N7—CAlk bond with elimination of the alkyl radical. The minor pathway is expulsion of alkyl radical from the amino nitrogen atom in the 6-position. The chemical ionization of 2,7-dihydrothiopyrano[2,3-b]pyrrol-6-amines characteristically involves protonation and electrophilic addition processes with the most abundant ion being [M + H]+.

Keywords

N,N-dialkyl-7-[alkyl and 2-(vinyloxy)ethyl]-2,7-dihydrothiopyrano[2,3-b]pyrrol-6-amines mass spectra electron impact and chemical ionization fragmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was performed using the equipment of the Baikal Joint Analytical Center, Siberian Branch, Russian Academy of Sciences.

References

  1. 1.
    Klyba, L.V, Nedolya, N.A., Sanzheeva, E.R., and Tarasova, O.A., Russ. J. Org. Chem., 2019, vol. 55, p. 518. doi  https://doi.org/10.1134/S1070428019040171 CrossRefGoogle Scholar
  2. 2.
    Comprehensive Heterocyclic Chemistry III, Katritzky, A.R., Ramsden, C.A., Scriven, E.F.V., and Taylor, R.J.K., Eds., Amsterdam: Elsevier, 2008, vol. 3, p. 3. doi  https://doi.org/10.1016/B978-008044992-0.00312-6 Google Scholar
  3. 3.
    Joshi, S.D., More, U.A., Kulkarni, V.H., and Aminabhavi, T.M., Curr. Org. Chem., 2013, vol. 17, p. 2279. doi  https://doi.org/10.2174/13852728113179990040 CrossRefGoogle Scholar
  4. 4.
    Black, D.St.C., Science of Synthesis. Hetarenes and Related Ring Systems, Maas, G., Ed., Stuttgart: Thieme, 2001, vol. 9, p. 441. doi  https://doi.org/10.1055/sos-SD-009-00542
  5. 5.
    Ingall, A.H., Comprehensive Heterocyclic Chemistry II, Katritzky, A.R., Rees, C.W., and Scriven, E.F.V., Eds., Oxford: Pergamon, 1996, vol. 5, p. 501.Google Scholar
  6. 6.
    Hepworth, J.D. and Heron, B.M., Comprehensive Heterocyclic Chemistry III, Katritzky, A.R., Ramsden, C.A., Scriven, E.F.V., and Taylor, R.J.K., Eds., Amsterdam: Elsevier, 2008, vol. 7, p. 727.Google Scholar
  7. 7.
    Chowdhury, S., Chanda, T., Koley, S., Ramulu, B.J., Raghuvanshi, K., and Singh, M.S., Tetrahedron, 2014, vol. 70, p. 914. doi  https://doi.org/10.1016/j.tet.2013.12.020 CrossRefGoogle Scholar
  8. 8.
    Adhikary, N.D., Kwon, S., Chung, W.-J., and Koo, S., J. Org. Chem., 2015, vol. 80, p. 7693. doi  https://doi.org/10.1021/acs.joc.5b01349 CrossRefPubMedGoogle Scholar
  9. 9.
    Forte, B., Malgesini, B., Piutti, C., Quartieri, F., Scolaro, A., and Papeo, G., Mar. Drugs, 2009, vol. 7, p. 705. doi  https://doi.org/10.3390/md7040705 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fitzgerald, M.A., Soltani, O., Wei, C., Skliar, D., Zheng, B., Li, J., Albrecht, J., Schmidt, M., Mahoney, M., Fox, R.J., Tran, K., Zhu, K., and Eastgate, M.D., J. Org. Chem., 2015, vol. 80, p. 6001. doi  https://doi.org/10.1021/acs.joc.5b00572 CrossRefPubMedGoogle Scholar
  11. 11.
    Wu, L., Wang, Y., Song, H., Tang, L., Zhou, Z., and Tang, C., Adv. Synth. Catal., 2013, vol. 355, p. 1053. doi  https://doi.org/10.1002/adsc.201300086 CrossRefGoogle Scholar
  12. 12.
    Singh, B., Chandra, A., Asthana, M., and Singh, R.M., Tetrahedron Lett., 2012, vol. 53, p. 3242. doi  https://doi.org/10.1016/j.tetlet.2012.04.032 CrossRefGoogle Scholar
  13. 13.
    Jha, M., Shelke, G.M., Cameron, T.S., and Kumar, A., J. Org. Chem., 2015, vol. 80, p. 5272. doi  https://doi.org/10.1021/jo5025943 CrossRefPubMedGoogle Scholar
  14. 14.
    Majumdar, K.C., Ponra, S., and Ghosh, T., RSC Adv., 2012, vol. 2, p. 1144. doi  https://doi.org/10.1039/C1RA00655J CrossRefGoogle Scholar
  15. 15.
    Baumann, M., Baxendale, I.R., Ley, S.V., and Ni, N., Beilstein J. Org. Chem., 2011, vol. 7, p. 442. doi  https://doi.org/10.3762/bjoc.7.57 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Huffman, J.W., The Cannabinoid Receptors, Reggio, P.H., Ed., Humana Press, 2009, p. 49. doi  https://doi.org/10.1007/978-1-59745-503-9_3
  17. 17.
    Brachet, E. and Belmont, P., J. Org. Chem., 2015, vol. 80, p. 7519. doi  https://doi.org/10.1021/acs.joc.5b01093 CrossRefPubMedGoogle Scholar
  18. 18.
    Kappelle, P.J.W.H., Dallinga-Thie, G.M., and Dullaart, R.P.F., Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 2010, vol. 1801, p. 89. doi  https://doi.org/10.1016/j.bbalip.2009.09.021 CrossRefGoogle Scholar
  19. 19.
    La Regina, G., Silvestri, R., Artico, M., Lavecchia, A., Novellino, E., Befani, O., Turini, P., and Agostinelli, E., J. Med. Chem., 2007, vol. 50, p. 922. doi  https://doi.org/10.1021/jm060882y CrossRefPubMedGoogle Scholar
  20. 20.
    Gupton, J., Heterocyclic Antitumor Antibiotics (Topics in Heterocyclic Chemistry, vol. 2), Lee, M., Ed., Berlin: Springer, 2006, p. 53. doi  https://doi.org/10.1007/7081_019
  21. 21.
    Heinze, J., Frontana-Uribe, B.A., and Ludwigs, S., Chem. Rev., 2010, vol. 110, p. 4724. doi  https://doi.org/10.1021/cr900226k CrossRefPubMedGoogle Scholar
  22. 22.
    Loudet, A. and Burgess, K., Chem. Rev., 2007, vol. 107, p. 4891. doi  https://doi.org/10.1021/cr078381n CrossRefPubMedGoogle Scholar
  23. 23.
    Li, H., Lambert, C., and Stahl, R., Macromolecules, 2006, vol. 39, p. 2049. doi  https://doi.org/10.1021/ma0601868 CrossRefGoogle Scholar
  24. 24.
    Berlin, A., Pagani, G.A., Schiavon, G., and Zotti, G., J. Chem. Soc., Perkin Trans. 2, 1990, p. 699. doi  https://doi.org/10.1039/P29900000699 CrossRefGoogle Scholar
  25. 25.
    Kochanowska-Karamyan, A.J. and Hamann, M.T., Chem. Rev., 2010, vol. 110, p. 4489. doi  https://doi.org/10.1021/cr900211p CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yeung, K.-S., Qiu, Z., Xue, Q., Fang, H., Yang, Z., Zadjura, L., D’Arienzo, C.J., Eggers, B.J., Riccardi, K., Shi, P.-Y., Gong, Y.-F., Browning, M.R., Gao, Q., Hansel, S., Santone, K., Lin, P.-F., Meanwell, N.A., and Kadow, J.F., Bioorg. Med. Chem. Lett., 2013, vol. 23, p. 198. doi  https://doi.org/10.1016/j.bmcl.2012.10.115 CrossRefPubMedGoogle Scholar
  27. 27.
    Shiri, M., Chem. Rev., 2012, vol. 112, p. 3508. doi  https://doi.org/10.1021/cr2003954 CrossRefPubMedGoogle Scholar
  28. 28.
    Valentine, R.A., Whyte, A., Awaga, K., and Robertson, N., Tetrahedron Lett., 2012, vol. 53, p. 657. doi  https://doi.org/10.1016/j.tetlet.2011.11.124 CrossRefGoogle Scholar
  29. 29.
    Gaumont, A.-C., Gulea, M., and Levillain, J., Chem. Rev., 2009, vol. 109, p. 1371. doi  https://doi.org/10.1021/cr800189z CrossRefPubMedGoogle Scholar
  30. 30.
    Adams, A. and De Kimpe, N., Chem. Rev., 2006, vol. 106, p. 2299. doi  https://doi.org/10.1021/cr040097y CrossRefPubMedGoogle Scholar
  31. 31.
    Takada, S. and Makisumi, Y., Chem. Pharm. Bull., 1984, vol. 32, p. 872. doi  https://doi.org/10.1248/cpb.32.872 CrossRefGoogle Scholar
  32. 32.
    Gokou, C.T., Pradère, J.-P., Quiniou, H., and Toupet, L., J. Chem. Soc., Perkin. Trans. 1, 1985, p. 1875. doi  https://doi.org/10.1039/P19850001875 CrossRefGoogle Scholar
  33. 33.
    Gabbutt, C.D., Hepworth, J.D., and Heron, B.M., J. Chem. Res., Synop., 1997, p. 102. doi  https://doi.org/10.1039/a607607f
  34. 34.
    Majumdar, K.C., Debnath, P., Alam, S., and Maji, P.K., Tetrahedron Lett., 2007, vol. 48, p. 7031. doi  https://doi.org/10.1016/j.tetlet.2007.07.132 CrossRefGoogle Scholar
  35. 35.
    Shivendra, S. and Sampak, S., Chin. J. Chem., 2015, vol. 33, p. 1244. doi  https://doi.org/10.1002/cjoc.201500572 CrossRefGoogle Scholar
  36. 36.
    Grigor’eva, A.I., Lebedeva, G.K., Snegireva, L.P., and Kvitko, I.Ya., Zh. Org. Khim., 1978, vol. 14, p. 637.Google Scholar
  37. 37.
    Trofimov, B.A., Nedolya, N.A., Tarasova, O.A., Sobenina, L.N., Petrova, O.V., Sagitova, E.F., and Albanov, A.I., J. Sulfur Chem., 2015, vol. 36, p. 630. doi  https://doi.org/10.1080/17415993.2015.1077842 CrossRefGoogle Scholar
  38. 38.
    Nedolya, N.A., Tarasova, O.A., Albanov, A.I., and Trofimov, B.A., Synthesis, 2016, vol. 48, p. 4278. doi  https://doi.org/10.1055/s-0035-1561492 CrossRefGoogle Scholar
  39. 39.
    Marcotte, F.-A. and Lubell, W.D., Org. Lett., 2002, vol. 4, p. 2601. doi  https://doi.org/10.1021/ol0262690 CrossRefPubMedGoogle Scholar
  40. 40.
    Montalbano, A., Parrino, B., Diana, P., Barraja, P., Carbone, A., Spano, V., and Cirrincione, G., Tetrahedron, 2013, vol. 69, p. 2550. doi  https://doi.org/10.1016/j.tet.2013.01.076 CrossRefGoogle Scholar
  41. 41.
    Brown, M.J., Carter, P.S., Fenwick, A.E., Fosberry, A.P., Hamprecht, D.W., Hibbs, M.J., Jarvest, R.L., Mensah, L., Milner, P.H., O’Hanlon, P.J., Pope, A.J., Richardson, C.M., West, A., and Witty, D.R., Bioorg. Med. Chem. Lett., 2002, vol. 12, p. 3171. doi  https://doi.org/10.1016/S0960-894X(02)00678-9 CrossRefPubMedGoogle Scholar
  42. 42.
    Quaglia, W., Pigini, M., Piergentili, A., Giannella, M., Gentili, F., Marucci, G., Carrieri, A., Poggesi, E., Leonardi, A., and Melchiorre, C.J., J. Med. Chem., 2002, vol. 45, p. 1633. doi  https://doi.org/10.1021/jm011066n CrossRefPubMedGoogle Scholar
  43. 43.
    Van Vliet, L.A., Rodenhuis, N., Dijkstra, D., Wikstrom, H., Pugsley, T.A., Serpa, K.A., Meltzer, L.T., Heffner, T.G., Wise, L.D., and Lajiness, M.E., J. Med. Chem., 2000, vol. 43, p. 2871. doi  https://doi.org/10.1021/jm0000113 CrossRefPubMedGoogle Scholar
  44. 44.
    Wang, W., Li, H., Wang, J., and Zu, L.S., J. Am. Chem. Soc., 2006, vol. 128, p. 10354. doi  https://doi.org/10.1021/ja063328m CrossRefPubMedGoogle Scholar
  45. 45.
    Sugita, Y., Hosoya, H., Terasawa, K., Yokoe, I., Fijisawa, S., and Sakagami, H., Anticancer Res., 2001, vol. 21, p. 2629.PubMedGoogle Scholar
  46. 46.
    Klyba, L.V., Nedolya, N.A., Tarasova, O.A., and Sanzheeva, E.R., Russ. J. Org. Chem., 2013, vol. 49, p. 384. doi:  https://doi.org/10.1134/S1070428013030123 CrossRefGoogle Scholar
  47. 47.
    Klyba, L.V., Nedolya, N.A., Tarasova, O.A., and Sanzheeva, E.R., Russ. J. Org. Chem., 2014, vol. 50, p. 35. doi:  https://doi.org/10.1134/S1070428014010072 CrossRefGoogle Scholar
  48. 48.
    Klyba, L.V., Nedolya, N.A., Tarasova, O.A., Zhanchipova, E.R., and Volostnykh, O.G., Russ. J. Org. Chem., 2010, vol. 46, p. 1038. doi:  https://doi.org/10.1134/S1070428010070134 CrossRefGoogle Scholar
  49. 49.
    Klyba, L.V., Tarasova, O.A., Nedolya, N.A., and Sanzheeva, E.R., Russ. J. Org. Chem., 2016, vol. 52, p. 1587. doi:  https://doi.org/10.1134/S1070428016110063 CrossRefGoogle Scholar
  50. 50.
    Klyba, L.V., Tarasova, O.A., and Nedolya, N.A., Russ. J. Org. Chem., 2016, vol. 52, p. 1773. doi:  https://doi.org/10.1134/S1070428016120101 CrossRefGoogle Scholar
  51. 51.
    Vul’fson, N.S., Zaikin, V.G., and Mikaya, A.I., Mass-spektrometriya organicheskikh soedinenii (Mass Spectrometry of Organic Compounds), Moscow: Khimiya, 1986, p. 28.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. V. Klyba
    • 1
    Email author
  • N. A. Nedolya
    • 1
  • E. R. Sanzheeva
    • 1
  • O. A. Tarasova
    • 1
  1. 1.Favorskii Irkutsk Institute of Chemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations