Advertisement

Russian Journal of Organic Chemistry

, Volume 55, Issue 6, pp 800–817 | Cite as

Metal—Organic Frameworks in Asymmetric Catalysis: Recent Advances

  • A. V. Artem’ev
  • V. P. FedinEmail author
Review
  • 38 Downloads

Abstract

The review summarizes recent advances in the use of homochiral metal—organic frameworks (MOFs) in asymmetric catalysis of organic reactions.

Keywords

coordination polymers metal—organic frameworks asymmetric heterogeneous catalysis enantio-selectivity homochirality ligands organic synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

The review was prepared under support by basic budgetary financing.

References

  1. 1.
    Mikami, K. and Lautens, M., New Frontiers in Asymmetric Catalysis, Weinheim: Wiley, 2007.CrossRefGoogle Scholar
  2. 2.
    Maltsev, O.V., Beletskaya, I.P., and Zlotin, S.G., Russ. Chem. Rev., 2011, vol. 80, p. 1067. doi  https://doi.org/10.1070/RC2011v080n11ABEH004249 CrossRefGoogle Scholar
  3. 3.
    Pavlov, V.A. and Pavlova, T.N., Russ. Chem. Rev., 2012, vol. 81, p. 823. doi  https://doi.org/10.1070/RC2012v081n09ABEH004305 CrossRefGoogle Scholar
  4. 4.
    Beletskaya, I.P. and Averin, A.D., Curr. Organocatal., 2016, vol. 3, p. 60. doi  https://doi.org/10.2174/2213337202666150505230013 CrossRefGoogle Scholar
  5. 5.
    Beletskaya, I.P., Nájera, C., and Yus, M., Chem. Rev., 2018, vol. 118, p. 5080. doi  https://doi.org/10.1021/acs.chemrev.7b00561 CrossRefPubMedGoogle Scholar
  6. 6.
    Anokhin, M.V., Feofanov, M.N., Averin, A.D., and Beletskaya, I.P., ChemistrySelect, 2018, vol. 3, p. 1388. doi  https://doi.org/10.1002/slct.201703028 CrossRefGoogle Scholar
  7. 7.
    Klabunovskii, E.I., Katal. Prom-sti., 2005, p. 3.Google Scholar
  8. 8.
    Blaser, H.-U. and Federsel, H.-J., Asymmetric Catalysis on Industrial Scale: Challenges, Approaches, and Solutions, Weinheim: Wiley, 2010, 2nd ed.CrossRefGoogle Scholar
  9. 9.
    Yutkin, M.P., Dybtsev, D.N., and Fedin, V.P., Russ. Chem. Rev., 2011, vol. 80, p. 1009. doi  https://doi.org/10.1070/RC2011v080n11ABEH004193 CrossRefGoogle Scholar
  10. 10.
    Corma, A., García, H., and Llabrés i Xamena, F.X., Chem. Rev., 2010, vol. 110, p. 4606. doi  https://doi.org/10.1021/cr9003924 CrossRefPubMedGoogle Scholar
  11. 11.
    Xu, W., Thapa, K.B., Ju, Q., Fang, Z., and Huang, W., Coord. Chem. Rev., 2018, vol. 373, p. 199. doi  https://doi.org/10.1016/j.ccr.2017.10.014 CrossRefGoogle Scholar
  12. 12.
    Yang, D. and Gates, B.C., ACS Catal., 2019, vol. 9, p. 1779. doi  https://doi.org/10.1021/acscatal.8b04515 CrossRefGoogle Scholar
  13. 13.
    Ma, L., Abney, C., and Lin, W., Chem. Soc. Rev., 2009, vol. 38, p. 1248. doi  https://doi.org/10.1039/B807083K CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wang, C., Zheng, M., and Lin, W., J. Phys. Chem. Lett., 2011, vol. 2, p. 1701. doi  https://doi.org/10.1021/jz200492d CrossRefGoogle Scholar
  15. 15.
    Leus, K., Liu, Y.-Y., and Van Der Voort, P., Catal. Rev.: Sci. Eng., 2014, vol. 56, p. 1. doi  https://doi.org/10.1080/01614940.2014.864145 CrossRefGoogle Scholar
  16. 16.
    Chughtai, A.H., Ahmad, N., Younus, H.A., Laypkov, A., and Verpoort, F., Chem. Soc. Rev., 2015, vol. 44, p. 6804. doi  https://doi.org/10.1039/C4CS00395K CrossRefPubMedGoogle Scholar
  17. 17.
    Gheorghe, A., Tepaske, M.A., and Tanase, S., Inorg. Chem. Front., 2018, vol. 5, p. 1512. doi  https://doi.org/10.1039/C8QI00063H CrossRefGoogle Scholar
  18. 18.
    Wen, Y., Zhang, J., Xu, Q., Wu, X.-T., and Zhu, Q.-L., Coord. Chem. Rev., 2018, vol. 376, p. 248. doi  https://doi.org/10.1016/j.ccr.2018.08.012 CrossRefGoogle Scholar
  19. 19.
    Bhattacharjee, S., Khan, M.I., Li, X., Zhu, Q.-L., and Wu, X.-T., Catalysts, 2018, vol. 8, p. 120. doi  https://doi.org/10.3390/catal8030120 CrossRefGoogle Scholar
  20. 20.
    Seo, J.S., Whang, D., Lee, H., Jun, S.I., Oh, J., Jeon, Y.J., and Kim, K., Nature, 2000, vol. 404, p. 982. doi  https://doi.org/10.1038/35010088 CrossRefGoogle Scholar
  21. 21.
    Falkowski, J.M., Sawano, T., Zhang, T., Tsun, G., Chen, Y., Lockard, J.V., and Lin, W., J. Am. Chem. Soc., 2014, vol. 136, p. 5213. doi  https://doi.org/10.1021/ja500090y CrossRefPubMedGoogle Scholar
  22. 22.
    Sawano, T., Ji, P., McIsaac, A.R., Lin, Z., Abney, C.W., and Lin, W., Chem. Sci., 2015, vol. 6, p. 7163. doi  https://doi.org/10.1039/C5SC02100F CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nguyen, K.D., Kutzscher, C., Drache, F., Senkovska, I., and Kaskel, S., Inorg. Chem., 2018, vol. 57, p. 1483. doi  https://doi.org/10.1021/acs.inorgchem.7b02854 CrossRefPubMedGoogle Scholar
  24. 24.
    Han, Q., He, C., Zhao, M., Qi, B., Niu, J., and Duan, C., J. Am. Chem. Soc., 2013, vol. 135, p. 10186. doi  https://doi.org/10.1021/ja401758c CrossRefPubMedGoogle Scholar
  25. 25.
    Han, Q., Qi, B., Ren, W., He, C. Niu, J., and Duan, C., Nat. Commun., 2015, vol. 6, p. 10007. doi  https://doi.org/10.1038/ncomms10007 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Xia, Q., Li, Z., Tan, C., Liu, Y., Gong, W., and Cui, Y., J. Am. Chem. Soc., 2017, vol. 139, p. 8259. doi  https://doi.org/10.1021/jacs.7b03113 CrossRefPubMedGoogle Scholar
  27. 27.
    Li, Z., Liu, Y., Xia, Q., and Cui, Y., Chem. Commun., 2017, vol. 53, p. 12313. doi  https://doi.org/10.1039/C7CC06979K CrossRefGoogle Scholar
  28. 28.
    Xi, W., Liu, Y., Xia, Q., Li, Z., and Cui, Y., Chem. Eur. J., 2015, vol. 21, p. 12581. doi  https://doi.org/10.1002/chem.201501486 CrossRefPubMedGoogle Scholar
  29. 29.
    Zhu, C., Xia, Q., Chen, X., Liu, Y., Du, X., and Cui, Y., ACS Catal., 2016, vol. 6, p. 7590. doi  https://doi.org/10.1021/acscatal.6b02359 CrossRefGoogle Scholar
  30. 30.
    Du, X., Li, Z., Liu, Y., Yang, S., and Cui, Y., Dalton Trans., 2015, vol. 44, p. 12999. doi  https://doi.org/10.1039/C5DT01682G CrossRefPubMedGoogle Scholar
  31. 31.
    Li, J., Ren, Y., Qia, C., and Jiang, H., Chem. Commun., 2017, vol. 53, p. 8223. doi  https://doi.org/10.1039/C7CC03499G CrossRefGoogle Scholar
  32. 32.
    Mo, K., Yang, Y., and Cui, Y., J. Am. Chem. Soc., 2014, vol. 136, p. 1746. doi  https://doi.org/10.1021/ja411887c CrossRefPubMedGoogle Scholar
  33. 33.
    Li, Z., Liu, Y., Kang, X., and Cui, Y., Inorg. Chem., 2018, vol. 57, p. 9786. doi  https://doi.org/10.1021/acs.inorgchem.8b01630 CrossRefPubMedGoogle Scholar
  34. 34.
    Bonnefoy, J., Legrand, A., Quadrelli, E.A., Canivet, J., and Farrusseng, D., J. Am. Chem. Soc., 2015, vol. 137, p. 9409. doi  https://doi.org/10.1021/jacs5b05327 CrossRefPubMedGoogle Scholar
  35. 35.
    Serra-Crespo, P., Ramos-Fernandez, E.V., Gascon, J., and Kapteijn, F., Chem. Mater., 2011, vol. 23, p. 2565. doi  https://doi.org/10.1021/cm103644b CrossRefGoogle Scholar
  36. 36.
    Liu, L., Zhou, T.-Y., and Telfer, S.G., J. Am. Chem. Soc., 2017, vol. 139, p. 13936. doi  https://doi.org/10.1021/jacs.5b05327 CrossRefPubMedGoogle Scholar
  37. 37.
    Zhu, W., He, C., Wu, P., Wu, X., and Duan, C., Dalton Trans., 2012, vol. 41, p. 3072. doi  https://doi.org/10.1039/C2DT12153K CrossRefPubMedGoogle Scholar
  38. 38.
    Liu, Y., Xi, X., Ye, C., Gong, T., Yang, Z., and Cui, Y., Angew. Chem., Int. Ed., 2014, vol. 53, p. 13821. doi  https://doi.org/10.1002/anie.201408896 CrossRefGoogle Scholar
  39. 39.
    Kutzscher, C., Nickerl, G., Senkovska, I., Bon, V., and Kaskel, S., Chem. Mater., 2016, vol. 28, p. 2573. doi  https://doi.org/10.1021/acs.chemmater.5b04575 CrossRefGoogle Scholar
  40. 40.
    Dong, X.-W., Yang, Y., Che, J.-X., Zuo, J., Li, X.-H., Gao, L., Hua, Y.-Z., and Liu, X.-Y., Green Chem., 2018, vol. 20, p. 4085. doi  https://doi.org/10.1039/C8GC01323C CrossRefGoogle Scholar
  41. 41.
    Fan, Y., Ren, Y., Li, J., Yue, C., and Jiang, H., Inorg. Chem., 2018, vol. 57, p. 11986. doi  https://doi.org/10.1021/acs.inorgchem.8b01551 CrossRefPubMedGoogle Scholar
  42. 42.
    Yu, Y.-H., Ye, H.-T., Hou, G.-F., Ren, C.-Y., Gao, J.-S., and Yan, P.-F., Cryst. Growth Des., 2016, vol. 16, p. 5669. doi  https://doi.org/10.1021/acs.cgd.6b00593 CrossRefGoogle Scholar
  43. 43.
    Hu, Y.-H., Liu, C.-X., Wang, J.-C., Ren, X.-H., Kan, X., and Dong, Y.-B., Inorg. Chem., 2019, vol. 58, p. 4722. doi  https://doi.org/10.1021/acs.inorgchem.8b02132 CrossRefPubMedGoogle Scholar
  44. 44.
    Jeong, K.S., Go, Y.B., Shin, S.M., Lee, S.J., Kim, J., Yaghi, O.M., and Jeong, N., Chem. Sci., 2011, vol. 2, p. 877. doi  https://doi.org/10.1039/C0SC00582G CrossRefGoogle Scholar
  45. 45.
    Lee, M., Shin, S.M., Jeong, N., and Thallapally, P.K., Dalton Trans., 2015, vol. 44, p. 9349. doi  https://doi.org/10.1039/C5DT01322D CrossRefPubMedGoogle Scholar
  46. 46.
    Lee, M.S., Shin, S.M., Kim, H.J., and Jeong, N., Bull. Korean Chem. Soc., 2015, vol. 36, p. 1282. doi  https://doi.org/10.1002/bkcs.10228 CrossRefGoogle Scholar
  47. 47.
    Tanaka, K., Nagase, S., Anami, T., Wierzbicki, M., and Urbanczyk-Lipkowska, Z., RSC Adv., 2016, vol. 6, p. 111 436. doi  https://doi.org/10.1039/C6RA23740A CrossRefGoogle Scholar
  48. 48.
    Xia, Q., Liu, Y., Li, Z., Gong, W., and Cui, Y., Chem. Commun., 2016, vol. 52, p. 13 167. doi  https://doi.org/10.1039/C6CC06019F CrossRefGoogle Scholar
  49. 49.
    Sawano, T., Thacker, N.C., Lin, Z., McIsaac, A.R., and Lin, W., J. Am. Chem. Soc., 2015, vol. 137, p. 12241. doi  https://doi.org/10.1021/jacs.5b09225 CrossRefPubMedGoogle Scholar
  50. 50.
    Dybtsev, D.N., Nuzhdin, A.L., Chun, H., Bryliakov, K.P., Talsi, E.P., Fedin, V.P., and Kim, K., Angew. Chem., Int. Ed., 2006, vol. 45, p. 916. doi  https://doi.org/10.1002/anie.200503023 CrossRefGoogle Scholar
  51. 51.
    Dybtsev, D.N., Yutkin, M.P., Samsonenko, D.G., Fedin, V.P., Nuzhdin, A.L., Bezrukov, A.A., Bryliakov, K.P., Talsi, E.P., Belosludov, R.V., Mizuseki, H., Kawazoe, Y., Subbotin, O.S., and Belosludov, V.R., Chem. Eur. J., 2010, vol. 16, p. 10 348. doi  https://doi.org/10.1002/chem.201000522 CrossRefGoogle Scholar
  52. 52.
    Nuzhdin, A.L., Dybtsev, D.N., Bryliakov, K.P., Talsi, E.P., and Fedin, V.P., J. Am. Chem. Soc., 2007, vol. 129, p. 12958. doi  https://doi.org/10.1021/ja076276p.54 CrossRefPubMedGoogle Scholar
  53. 53.
    Li, J., Ren, Y., Yue, C., Fan, Y., Qi, C., and Jiang, H., ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 36047. doi  https://doi.org/10.1021/acsami.8b14118 CrossRefPubMedGoogle Scholar
  54. 54.
    Chen, J., Chen, X., Zhang, Z., Bao, Z., Xing, H., Yang, Q., and Ren, Q., Mol. Catal., 2018, vol. 445, p. 163. doi  https://doi.org/10.1016/j.mcat.2017.11.012 CrossRefGoogle Scholar
  55. 55.
    Zheng, M., Liu, Y., Wang, C., Liu, S., and Lin, W., Chem. Sci., 2012, vol. 3, p. 2623. doi  https://doi.org/10.1039/C2SC20379K CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations