Russian Journal of Organic Chemistry

, Volume 55, Issue 6, pp 762–770 | Cite as

Synthesis of New Purine Derivatives Containing α- and ω-Amino Acid Fragments

  • V. V. Musiyak
  • I. A. Nizova
  • T. V. Matveeva
  • G. L. Levit
  • V. P. KrasnovEmail author
  • V. N. Charushin


New conjugates of purine and 2-aminopurine with several α- and ω-amino acids have been synthesized following two approaches based on the condensation and nucleophilic substitution reactions. The enantiomeric purity of the isolated compounds has been confirmed by reversed-phase HPLC using a chiral stationary phase to demonstrate the absence of racemization during the synthesis. The conjugates are inactive against Mycobacterium tuberculosis H37Rv.


purine derivatives amino acids enantiomers peptide synthesis nucleophilic substitution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Dr. M.I. Kodess and M.A. Ezhikova for recording the NMR spectra, Dr. I.N. Ganebnykh for recording the high-resolution mass spectra, the Group of Elemental Analysis under the guidance of Dr. L.N. Bazhenova (Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences), Dr. A.A. Tumashov for performing HPLC analyses, and Dr. M.A. Kravchenko for performing in vitro biological studies. This study was carried out using the equipment of the “Spectroscopy and Analysis of Organic Compounds” joint center.


This study was performed under financial support by the Russian Science Foundation (project no. 19-13-00231).


  1. 1.
    Rosemeyer, H., Chem. Biodiversity, 2004, vol. 1, p. 361. doi CrossRefGoogle Scholar
  2. 2.
    Legraverend, M., Tetrahedron, 2008, vol. 64, p. 8585. doi CrossRefGoogle Scholar
  3. 3.
    Savić, D., Stanković, T., Lavrnja, I., Podolski-Renić, A., Banković, J., Peković, S., Stojiljković, M., Rakić, L., Ruždijić, S., and Pešić, M., Mol. Inhib. Targeted Ther., 2015, vol. 1, p. 3. doi Google Scholar
  4. 4.
    Wang, C., Song, Z., Yu, H., Liu, K., and Ma, X., Acta Pharm. Sin. B, 2015, vol. 5, p. 431. doi CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mehellou, Y., ChemMedChem, 2016, vol. 11, p. 1114. doi CrossRefPubMedGoogle Scholar
  6. 6.
    Nielsen, P.E., Chem. Biodiversity, 2010, vol. 7, p. 786. doi CrossRefGoogle Scholar
  7. 7.
    Dezhenkov, A.V., Cheshkov, D.A., Prokhorov, I.A., Dezhenkova, L.G., Shvets, V.I., and Kirillova, Yu.G., Russ. Chem. Bull., Int. Ed., 2015, vol. 64, p. 1100. doi CrossRefGoogle Scholar
  8. 8.
    Sohtome, Y. and Sodeoka, M., Chem. Rec., 2018, vol. 18, p. 1. doi CrossRefGoogle Scholar
  9. 9.
    Gruzdev, D.A., Musiyak, V.V., Levit, G.L., Krasnov, V.P., and Charushin, V.N., Russ. Chem. Rev., 2018, vol. 87, p. 604. doi CrossRefGoogle Scholar
  10. 10.
    Figueiredo, P., Costa, M., Pontes, O., Baltazar, F., and Proença, F., Eur. J. Org. Chem., 2018, p. 3943. doi
  11. 11.
    Fosu-Mensah, N.A., Jiang, W., Brancale, A., Cai, J., and Westwell, A.D., Med. Chem. Res., 2019, vol. 28, p. 182. doi CrossRefGoogle Scholar
  12. 12.
    Zhou, D., Xie, D., He, F., Song, B., and Hu, D., Bioorg. Med. Chem. Lett., 2018, vol. 28, p. 2091. doi CrossRefPubMedGoogle Scholar
  13. 13.
    Modi, J.A. and Patel, K.C., Med. Chem. Res., 2012, vol. 21, p. 1660. doi CrossRefGoogle Scholar
  14. 14.
    Brændvang, M., Bakken, V., and Gundersen, L.-L., Bioorg. Med. Chem., 2009, vol. 17, p. 6512. doi CrossRefPubMedGoogle Scholar
  15. 15.
    Pathak, A.K., Pathak, V., Seitz, L.E., Suling, W.J., and Reynolds, R.C., Bioorg. Med. Chem., 2013, vol. 21, p. 1685. doi CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gruzdev, D.A., Chulakov, E.N., Levit, G.L., Kravchenko, M.A., Krasnov, V.P., and Charushin, V.N., Mendeleev Commun., 2017, vol. 27, p. 547. doi CrossRefGoogle Scholar
  17. 17.
    Zhang, G. and Ren, Y., Molecules, 2018, vol. 23, p. 2924. doi CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Gucký, T., Řezníčková, E., Radošová Muchová, T., Jorda, R., Klejová, Z., Malínková, V., Berka, K., Bazgier, V., Ajani, H., Lepšík, M., Divoký, V., and Kryštof, V., J. Med. Chem., 2018, vol. 61, p. 3855. doi CrossRefPubMedGoogle Scholar
  19. 19.
    Krasnov, V.P., Vigorov, A.Yu., Musiyak, V.V., Nizova, I.A., Gruzdev, D.A., Matveeva, T.V., Levit, G.L., Kravchenko, M.A., Skornyakov, S.N., Bekker, O.B., Danilenko, VN., and Charushin, VN., Bioorg. Med. Chem. Lett., 2016, vol. 26, p. 2645. doi CrossRefPubMedGoogle Scholar
  20. 20.
    Ward, D.N., Wade, J., Walborg, E.F., Jr., and Osdene, T.S., J. Org. Chem., 1961, vol. 26, p. 5000. doi CrossRefGoogle Scholar
  21. 21.
    Lettré, H. and Ballweg, H., Justus Liebigs Ann. Chem., 1960, vol. 633, p. 171. doi CrossRefGoogle Scholar
  22. 22.
    Krasnov, V.P., Vigorov, A.Yu., Gruzdev, D.A., Levit, G.L., Kravchenko, M.A., Skornyakov, S.N., Bekker, O.B., Maslov, D.A., Danilenko, V.N., and Charushin, V.N., Pharm. Chem. J., 2017, vol. 51, p. 769. doi CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Musiyak
    • 1
  • I. A. Nizova
    • 1
  • T. V. Matveeva
    • 1
  • G. L. Levit
    • 1
  • V. P. Krasnov
    • 1
    Email author
  • V. N. Charushin
    • 1
  1. 1.Postovskii Institute of Organic Synthesis, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations