Russian Journal of Organic Chemistry

, Volume 55, Issue 6, pp 755–761 | Cite as

Synthesis of Purine and 2-Aminopurine Conjugates with N-(4-Aminobenzoyl)-(S)-glutamic Acid

  • V. P. KrasnovEmail author
  • A. Yu. Vigorov
  • E. N. Chulakov
  • I. A. Nizova
  • G. L. Levit
  • M. A. Kravchenko
  • V. N. Charushin


Purine and 2-aminopurine conjugates with N-(4-aminobenzoyl)-(S)-glutamic acid connected to C6 of the purine system either directly or through an aminoethyl linker have been synthesized by nucleophilic substitution of chlorine in 6-chloropurine and 2-amino-6-chloropurine. 2-Aminopurine conjugate with 4-aminobenzoic acid linked through a glycine residue has also been obtained. Testing of the synthesized compounds for tuberculostatic activity in vitro has revealed a moderate activity of methyl 4-[2-(2-aminopurin-6-ylamino)-acetyl]amino}benzoate.


purines conjugates 4-aminobenzoic acid glutamic acid tuberculostatic activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Dr. M.I. Kodess and M.A. Ezhikova for recording the NMR spectra, Dr. I.N. Ganebnykh for recording the high-resolution mass spectra, and the Group of Elemental Analysis under the guidance of Dr. L.N. Bazhenova (Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences). This study was performed using the equipment of the “Spectroscopy and Analysis of Organic Compounds” joint center.


This study was performed under financial support by the Russian Science Foundation (project no. 19-13-00231).


  1. 1.
    Rosemeyer, H., Chem. Biodiversity, 2004, vol. 1, p. 361. doi CrossRefGoogle Scholar
  2. 2.
    Legraverend, M. and Grierson, D.S., Bioorg. Med. Chem., 2006, vol. 14, p. 3987. doi CrossRefGoogle Scholar
  3. 3.
    Pozharskii, A.F., Soldatenkov, A.T., and Katritzky, A.R., Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, Biochemistry, and Applications, Chichester: Wiley, 2011, 2nd ed.CrossRefGoogle Scholar
  4. 4.
    Krasnov, V.P., Vigorov, A.Yu., Musiyak, V.V., Nizova, I.A., Gruzdev, D.A., Matveeva, T.V., Levit, G.L., Kravchenko, M.A., Skornyakov, S.N., Bekker, O.B., Danilenko, V.N., and Charushin, V.N., Bioorg. Med. Chem. Lett., 2016, vol. 26, p. 2645. doi CrossRefGoogle Scholar
  5. 5.
    Berlicki, L., Mini-Rev. Med. Chem., 2008, vol. 8, p. 869. doi CrossRefGoogle Scholar
  6. 6.
    Mowbray, S.L., Kathiravan, M.K., Pandey, A.A., and Odell, L.R., Molecules, 2014, vol. 19, p. 13 161. doi CrossRefGoogle Scholar
  7. 7.
    Shelke, R.U., Degani, M.S., Raju, A., Ray, M.K., and Rajan, M.G.R., Arch. Pharm. (Weinheim, Ger.), 2016, vol. 349, p. 602. doi CrossRefGoogle Scholar
  8. 8.
    Visentin, M., Zhao, R., and Goldman, I.D., Hematol./Oncol. Clin. North Am., 2012, vol. 26, p. 629. doi CrossRefGoogle Scholar
  9. 9.
    Corona, P., Vitale, G., Loriga, M., Paglietti, G., La Colla, P., Collu, G., Sanna, G., and Loddo, R., Eur. J. Med. Chem., 2006, vol. 41, p. 1102. doi CrossRefGoogle Scholar
  10. 10.
    Sum, P.-E., How, D.W., Sabatini, J.J., Xiang, J.S., Ipek, M., and Feyfant, E., Int. Patent Appl. no. WO 2007 008994; Chem. Abstr., 2007, vol. 146, no. 163 390.Google Scholar
  11. 11.
    Garro Martinez, J.C., Andrada, M.F., Vega-Hissi, E.G., Garibotto, F.M., Nogueras, M., Rodriguez, R., Cobo, J., Enriz, R.D., and Estrada, M.R., Med. Chem. Res., 2016, vol. 26, p. 247. doi CrossRefGoogle Scholar
  12. 12.
    Gruzdev, D.A., Musiyak, V.V., Chulakov, E.N., Levit, G.L., and Krasnov, V.P., Chem. Heterocycl. Compd., 2015, vol. 51, p. 738. doi CrossRefGoogle Scholar
  13. 13.
    Qian, S., He, T., Wang, W., He, Y., Zhang, M., Yang, L., Li, G., and Wang, Z., Bioorg. Med. Chem., 2016, vol. 24, p. 6194. doi CrossRefGoogle Scholar
  14. 14.
    Krasnov, V.P., Vigorov, A.Yu., Gruzdev, D.A., Levit, G.L., Kravchenko, M.A., Skornyakov, S.N., Bekker, O.B., Maslov, D.A., Danilenko, V.N., and Charushin, V.N., Pharm. Chem. J., 2017, vol. 51, p. 769. doi CrossRefGoogle Scholar
  15. 15.
    Davison, H.R., Solano, D.M., Phuan, P.-W., Verkman, A.S., and Kurth, M.J., Bioorg. Med. Chem. Lett., 2012, vol. 22, p. 1602. doi CrossRefGoogle Scholar
  16. 16.
    Kalindjian, S.B. and Smith, R.A.G., Biochem. J., 1987, vol. 248, p. 409. doi CrossRefGoogle Scholar
  17. 17.
    Krasnov, V.P., Vigorov, A.Yu., Gruzdev, D.A., Levit, G.L., Demin, A.M., Nizova, I.A., Tumashov, A.A., Sadretdinova, L.Sh., Gorbunov, E.B., and Charushin, V.N., Russ. Chem. Bull., Int. Ed., 2015, vol. 64, p. 2106. doi CrossRefGoogle Scholar
  18. 18.
    Pogorelcnik, B., Brvar, M., Zegura, B., Filipic, M., Solmajer, T., and Perdih, A., ChemMedChem, 2015, vol. 10, p. 345. doi CrossRefGoogle Scholar
  19. 19.
    Bartkovitz, D.J., Chu, X.-J., Ding, Q., Karnachi, P.S., Liu, J.-J., So, S.-S., Zhang, J., and Zhang, Z., Int. Patent Appl. no. WO 2012 022707; Chem. Abstr., 2012, vol. 156, no. 311006.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. P. Krasnov
    • 1
    Email author
  • A. Yu. Vigorov
    • 1
  • E. N. Chulakov
    • 1
  • I. A. Nizova
    • 1
  • G. L. Levit
    • 1
  • M. A. Kravchenko
    • 2
  • V. N. Charushin
    • 1
    • 3
  1. 1.Postovskii Institute of Organic Synthesis, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Research Institute of PhthisiopulmonologyNational Medical Research Center, Ministry of Healthcare of the Russian FederationYekaterinburgRussia
  3. 3.Institute of Chemical EngineeringYeltsin Ural Federal UniversityYekaterinburgRussia

Personalised recommendations