Advertisement

Russian Journal of Organic Chemistry

, Volume 55, Issue 6, pp 737–747 | Cite as

Arylation of Adamantanamines: X. Palladium- and Copper-Catalyzed Heteroarylation of Adamantane-Containing Amines with Bromopyridines

  • M. S. Lyakhovich
  • A. V. Murashkina
  • A. D. AverinEmail author
  • A. S. Abel
  • O. A. Maloshitskaya
  • E. N. Savelyev
  • B. S. Orlinson
  • I. P. Beletskaya
Article
  • 17 Downloads

Abstract

The catalytic efficiencies of palladium(0) and copper(I) complexes in the amination of 2-bromopyridine and its fluorine-containing derivatives with (1-adamantyl)methanamine and 2-(1-adamantyloxy)ethanamine were compared. Both types of catalytic systems were shown to be applicable for the preparation of the corresponding N-pyridyl derivatives from 3- and 5-fluoro- and 4-, 5-, and 6-trifluoromethyl-2-bromopyridines. DavePhos was found to be the most efficient ligand in the Pd(0)-catalyzed reactions; however, the reactions with 2-bromo-4-(trifluoromethyl)pyridine and 2-bromo-5-(trifluoromethyl)pyridine were accompanied by formation of a considerable amount of the diarylation product. The diarylation process was significantly suppressed in the presence of copper(I) complexes.

Keywords

adamantane amines pyridine amination homogeneous catalysis palladium and copper complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 17-03-00888).

References

  1. 1.
    Averin, A.D., Panchenko, S.P., Abel, A.S., Maloshitskaya, O.A., Butov, G.M., Savelyev, E.N., Orlinson, B.S., Novakov, I.A., and Beletskaya, I.P., Russ. J. Org. Chem., 2017, vol. 53, p. 1788. doi  https://doi.org/10.1134/S1070428017120028 CrossRefGoogle Scholar
  2. 2.
    Baxter, A., Bent, J., Bowers, K., Braddock, M., Brough, S., Fagura, M., Lawson, M., McInally, T., Mortimore, M., Robertson, M., Weaver, R., and Webborn, P., Bioorg. Med. Chem. Lett., 2003, vol. 13, p. 4047. doi  https://doi.org/10.1016/j.bmcl.2003.08.034 CrossRefPubMedGoogle Scholar
  3. 3.
    Levina, M.N., Bull. Exp. Biol. Med., 2005, vol. 139. p. 337. doi  https://doi.org/10.1007/s10517-005-0288-0 CrossRefPubMedGoogle Scholar
  4. 4.
    Kovtun, V.Yu. and Plakhotnik, V.M., Pharm. Chem. J., 1987, vol. 21, p. 555. doi  https://doi.org/10.1007/BF00759430 CrossRefGoogle Scholar
  5. 5.
    Banie, H., Sinha, A., Thomas, R.J., Sircar, J.C., and Richards, M.L., J. Med. Chem., 2007, vol. 50, p. 5984. doi  https://doi.org/10.1021/jm0704907 CrossRefPubMedGoogle Scholar
  6. 6.
    Meanwell, M.N., Eastman, K.J., and Gillis, E.P., Fluorine in Heterocyclic Chemistry, Nenajdenko, V., Ed., Cham: Springer, 2014, vol. 1, p. 1. doi  https://doi.org/10.1007/978-3-319-04346-3
  7. 7.
    Hansch, C., Leo, A., and Taft, R.W., Chem. Rev., 1991, vol. 91, p. 165. doi  https://doi.org/10.1021/cr00002a004 CrossRefGoogle Scholar
  8. 8.
    O’Hagan, D., J. Org. Chem., 2012, vol. 77, p. 3689. doi  https://doi.org/10.1021/jo300044q CrossRefPubMedGoogle Scholar
  9. 9.
    Barbarich, N.J., Rithner, C.D., Miller, S.M., Anderson, O.P., and Strauss, S.H., J. Am. Chem. Soc., 1999, vol. 121, p. 4280. doi  https://doi.org/10.1021/ja983552e CrossRefGoogle Scholar
  10. 10.
    Wan, Z.-K., Chenail, E., Xiang, J., Li, H-Q., Ipek, M., Bard, J., Svenson, K., Mansour, N.S., Xu, X., Suri, V., Hahm, S., Xing, Y., Johnson, C.E., Li, X., Qadri, A., Panza, D., Perreault, M., Tobin, J.F., and Saiah, E., J. Med. Chem., 2009, vol. 52, p. 5449. doi  https://doi.org/10.1021/jm900639u CrossRefPubMedGoogle Scholar
  11. 11.
    Ishikawa, M. and Hashimoto, Y., J. Med. Chem., 2011, vol. 54, p. 1539. doi  https://doi.org/10.1021/jm101356p CrossRefPubMedGoogle Scholar
  12. 12.
    Scherman, M.S., North, E.J., Jones, V., Hess, T.N., Grzegorzewicz, A.E., Kasagami, T., Kim, I.-H., Merzlikin, O., Lenaerts, A.J., Lee, R.E., Jackson, M., Morisseau, C., and McNeil, M.R., Bioorg. Med. Chem., 2012, vol. 20, p. 3255. doi  https://doi.org/10.1016/j.bmc.2012.03.058 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Al-Omar, M.A., Al-Abdullah, E.S., Shehata, I.A., Habib, E.E., Ibrahim, T.M., and El-Emam, A.A., Molecules, 2010, vol. 15, p. 2526. doi  https://doi.org/10.3390/molecules15042526 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yu, X., Zhang, M., Annamalai, T., Bansod, P., Narula, G., Tse-Dinh, Y.-C., and Sun, D., Eur. J. Med. Chem., 2017, vol. 125, p. 515. doi  https://doi.org/10.1016/j.ejmech.2016.09.053 CrossRefPubMedGoogle Scholar
  15. 15.
    O’Brien-Brown, J., Jackson, A., Reekie, T.A., Barron, M.L., Werry, E.L., Schiavini, P., McDonnell, M., Munoz, L., Wilkinson, S., Noll, B., Wang, S., and Kassiou, M., Eur. J. Med. Chem., 2017, vol. 130, p. 433. doi  https://doi.org/10.1016/j.ejmech.2017.02.060 CrossRefPubMedGoogle Scholar
  16. 16.
    Udagawa, S., Sakami, S., Takemura, T., Sato, M., Arai, T., Nitta, A., Aoki, T., Kawai, K., Iwamura, T., Okazaki, S., Takahashi, T., and Kaino, M., Bioorg. Med. Chem. Lett., 2013, vol. 23, p. 1617. doi  https://doi.org/10.1016/j.bmcl.2013.01.090 CrossRefPubMedGoogle Scholar
  17. 17.
    Rohde, J.J., Pliushchev, M.A., Sorensen, B.K., Wodka, D., Shuai, Q., Wang, J., Fung, S., Monzon, K.M., Chiou, W.J., Pan, L., Deng, X., Chovan, L.E., Ramaiya, A., Mullally, M., Henry, R.F., Stolarik, D.F., Imade, H.M., Marsh, K.C., Beno, D.W.A., Fey, T.A., Droz, B.A., Brune, M.E., Camp, H.S., Sham, H.L., Frevert, E.U., Jacobson, P.B., and Link, J.T., J. Med. Chem., 2007, vol. 50, p. 149. doi  https://doi.org/10.1021/jm0609364 CrossRefPubMedGoogle Scholar
  18. 18.
    Berglund, S., Egner, B.J., Graden, H., Graden, J., Morgan, D.G.A., Inghardt, T., and Giordanetto, F., Bioorg. Med. Chem. Lett., 2009, vol. 19, p. 4274. doi  https://doi.org/10.1016/j.bmcl.2009.05.066 CrossRefPubMedGoogle Scholar
  19. 19.
    Brogi, S., Corelli, F., Di Marzo, V., Ligresti, A., Mugnaini, C., Pasquini, S., and Tafi, A., Eur. J. Med. Chem., 2011, vol. 46, p. 547. doi  https://doi.org/10.1016/j.ejmech.2010.11.034 CrossRefPubMedGoogle Scholar
  20. 20.
    Tice, C.M., Zhao, W., Krosky, P.M., Kruk, B.A., Berbaum, J., Johnson, J.A., Bukhtiyarov, Y., Panemangalore, R., Scott, B.B., Zhao, Y., Bruno, J.G., Howard, L., Togias, J., Ye, Y.J., Singh, S.B., Mc-Keever, B.M., Lindblom, P.R., Guo, J., Guo, R., Nar, H., Schuler-Metz, A., Gregg, R.E., Leftheris, K., Harrison, R.K., McGeehan, G.M., Zhuang, L., and Claremon, D.A., Bioorg. Med. Chem., 2010, vol. 20, p. 6725. doi  https://doi.org/10.1016/j.bmc.2010.07.055 CrossRefGoogle Scholar
  21. 21.
    Averin, A.D., Ranyuk, E.R., Golub, S.L., Buryak, A.K., Savelyev, E.N., Orlinson, B.S., Novakov, I.A., and Beletskaya, I.P., Synthesis, 2007, vol. 2215. doi  https://doi.org/10.1055/s-2007-983760
  22. 22.
    Averin, A.D., Ranyuk, E.R., Buryak, A.K., Savelyev, E.N., Orlinson, B.S., Novakov, I.A., and Beletskaya, I.P., Mendeleev Commun., 2009, vol. 19, p. 136. doi  https://doi.org/10.1016/j.mencom.2009.05.007 CrossRefGoogle Scholar
  23. 23.
    Kobelev, S.M., Averin, A.D., Buryak, A.K., Savelyev, E.N., Orlinson, B.S., Butov, G.M., Novakov, I.A., Denat, F., Guilard, R., and Beletskaya, I.P., Arkivoc, 2012, part (vii), p. 196. doi  https://doi.org/10.3998/ark.5550190.0013.713
  24. 24.
    Abel, A.S., Averin, A.D., Maloshitskaya, O.A., Savelyev, E.N., Orlinson, B.S., Novakov, I.A., and Beletskaya, I.P., Molecules, 2013, vol. 18, p. 2096. doi  https://doi.org/10.3390/molecules18022096 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Abel, A.S., Averin, A.D., Buryak, A.K., Savelyev, E.N., Orlinson, B.S., Novakov, I.A., and Beletskaya, I.P., Synthesis, 2017, vol. 49, p. 5067. doi  https://doi.org/10.1055/s-0036-1590860 CrossRefGoogle Scholar
  26. 26.
    Abel, A.S., Averin, A.D., Anokhin, M.V., Maloshitskaya, O.A., Butov, G.M., Savelyev, E.N., Orlinson, B.S., Novakov, I.A., and Beletskaya, I.P., Russ. J. Org. Chem., 2015, vol. 51, p. 301. doi  https://doi.org/10.1134/S1070428015030021 CrossRefGoogle Scholar
  27. 27.
    Panchenko, S.P., Abel, A.S., Averin, A.D., Maloshitskaya, O.A., Savelyev, E.N., Orlinson, B.S., Novakov, I.A., and Beletskaya, I.P., Russ. Chem. Bull., Int. Ed., 2016, vol. 65, p. 1550. doi  https://doi.org/10.1007/s11172-016-1481-1 CrossRefGoogle Scholar
  28. 28.
    Panchenko, S.P., Abel, A.S., Averin, A.D., Maloshitskaya, O.A., Savelyev, E.N., Orlinson, B.S., Novakov, I.A., and Beletskaya, I.P., Russ. J. Org. Chem., 2017, vol. 53, p. 1497. doi  https://doi.org/10.1134/S1070428017100025 CrossRefGoogle Scholar
  29. 29.
    Chernichenko, N.M., Averin, A.D., and Beletskaya, I.P., Lett. Org. Chem., 2018, vol. 15, p. 425. doi  https://doi.org/10.2174/1570178615666171222151821 CrossRefGoogle Scholar
  30. 30.
    Gopalan, B., Thomas, A., and Shah, D.M., PCT Int. Appl. WO 2006090244, 2006; Chem. Abstr., 2006, vol. 145, no. 292604.Google Scholar
  31. 31.
    Ukai, T., Kawazura, H., Ishii, Y., Bonnet, J.J., and Ibers, J.A., J. Organomet. Chem., 1974, vol. 65, p. 253. doi  https://doi.org/10.1016/S0022-328X(00)91277-4 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. S. Lyakhovich
    • 1
  • A. V. Murashkina
    • 1
  • A. D. Averin
    • 1
    • 2
    Email author
  • A. S. Abel
    • 1
  • O. A. Maloshitskaya
    • 1
  • E. N. Savelyev
    • 3
  • B. S. Orlinson
    • 3
  • I. P. Beletskaya
    • 1
    • 2
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and ElectrochemistryMoscowRussia
  3. 3.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations