Advertisement

Russian Journal of Organic Chemistry

, Volume 55, Issue 5, pp 707–715 | Cite as

Recognition and Sensing of Guanidine-containing Biomolecules in Aqueous Medium

  • Subrata JanaEmail author
  • Kishor Kumar Suryavanshi
Article

Abstract

A dicarboxylate-based fluorescent receptor has been synthesized for the recognition of the guanidinium ion and guanidine-containing biomolecules in aqueous medium to address the issue of biomolecular interaction. The acyclic receptor binds to guests in a 1: 2 mode due to the flexibility of its binding motifs. The host-guest binding behavior was studied by means of UV and fluorescence titration. The binding of the host with the guanidinium ion was found to be stronger than with the other guanidine-containing guests.

Key words

molecular recognition host-guest fluorescence sensor α,β-unsaturated carbonyl guanidinium ion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Subrata Jana thanks to MPCST, Govt. of Madhya Pradesh, India for financial support. Kishor Kumar Suryavanshi thanks to Indira Gandhi National Tribal University (Central University), Amarkantak, M.P., India for research fellowship.

References

  1. 1.
    (a) Fujisawa, K., Humbert-Droz, M., Letrun, R., Vauthey, E., Wesolowski, T.A., Sakai, N., and Matile, S., J. Am. Chem. Soc., 2015, vol. 137, p. 11047. (b) Wang, X., Sarycheva, O.V., Koivisto, B.D., McKie, A.H. and Hof, F., Org. Lett., 2008, vol. 10, p. 297.CrossRefGoogle Scholar
  2. 2.
    (a) Balakrishnan, S., Scheuermann, M. J., and Zondlo, N.J., ChemBioChem, 2012, vol. 13, p. 259. (b) Chen, H., Gu, L., Yin, Y., Koh, K., and Lee, J., Int. J. Mol. Sci., 2011, vol. 12, p. 2315.CrossRefGoogle Scholar
  3. 3.
    Guinovart, T., Hernandez-Alonso, D., Adriaenssens, L., Blondeau, P., Martinez-Belmonte, M., Rius, F.X., Andrade, F. J., and Ballester, P., Angew. Chem. Int. Ed., 2016, vol. 55, p. 2435.CrossRefGoogle Scholar
  4. 4.
    Bell, T.W., Khasanov, A.B., and Drew, M.G.B., J. Am. Chem. Soc., 2002, vol. 124, p. 14092.CrossRefGoogle Scholar
  5. 5.
    Fokkens, M., Schrader, T., and Klarner, F.-G., J. Am. Chem. Soc., 2005, vol. 127, p. 14415.CrossRefGoogle Scholar
  6. 6.
    Potocky, T.B., Silvius, J., Menon, A.K., and Gellman, S.H., ChemBioChem, 2007, vol. 8, p. 917.CrossRefGoogle Scholar
  7. 7.
    Schug, K.A. and Lindner, W., Chem. Rev., 2005, vol. 105, p. 67.CrossRefGoogle Scholar
  8. 8.
    Wender, P.A., Galliher, W.C., Goun, E.A., Jones, L.R., and Pillow, T.H., Adv. Drug Delivery Rev., 2008, vol. 60, p. 452.CrossRefGoogle Scholar
  9. 9.
    Mueller, N., Pasternak, A.O., Klaver, B., Cornelissen, M., Berkhout, B., and Das, A.T., J. Virol., 2018, vol. 92, p. e01855–17.CrossRefGoogle Scholar
  10. 10.
    Hammond, J.A., Zhou, L., Lamichhane, R., Chu, H.-Y., Millar, D.P., Gerace, L., and Williamson, J.R., J. Mol. Biol., 2018, vol. 430, p. 537.CrossRefGoogle Scholar
  11. 11.
    Lee, S.D., Yu, K.L., Park, S.H., Jung, Y.M., Kim, M.J., and You, J.C., BMB Rep., 2018, vol. 51, p. 388.CrossRefGoogle Scholar
  12. 12.
    (a) Best, M.D., Tobey, S.L., and Anslyn, E.V., Coord. Chem. Rev., 2003, vol. 240, p. 3. (b) Leow, D., and Tan, C.H., Chem. Asian J., 2009, vol. 4, p. 488. (c) Blondeau, P., Segura, M., Prez-Fernndez, R., and de Mendoza, J., Chem. Soc. Rev., 2007, vol. 36, p. 198. (d)Schmuck, C., Coord. Chem. Rev., 2006, vol. 250, p. 3053.CrossRefGoogle Scholar
  13. 13.
    Gokel, G.W., Leevy, M., and Weber, M.E., Chem. Rev., 2004, vol. 104, p. 2723.CrossRefGoogle Scholar
  14. 14.
    (a) James, L.I., Beaver, J.E., Rice, N.W. and Waters, M.L., J. Am. Chem. Soc., 2013, vol. 135, p. 6450. (b) Zhou, X., Jin, X., Li, D., and Wu, X. Chem. Commun., 2011, vol. 47, p. 3921.CrossRefGoogle Scholar
  15. 15.
    Barrow, S.J., Kasera, S., Rowland, M.J., del Barrio, J., and Scherman, O.A., Chem. Rev., 2015, vol. 115, p. 12320.CrossRefGoogle Scholar
  16. 16.
    Chen, H., Gu, L., Yin, Y., Koh, K., and Lee, J., Int. J. Mol. Sci., 2011, vol. 12, p. 2315.CrossRefGoogle Scholar
  17. 17.
    Späth, A., and König, B., Beilstein J. Org. Chem., 2010, vol. 6, no. 32. doi 10.3762/bjoc.6.32; (b) Gersthagen, T., Schmuck, C., and Schrader, T. Supramol. Chem., 2010, vol. 22, p. 853.Google Scholar
  18. 18.
    (a) Oshovsky, G.V., Reinhoudt, D.N., and Verboom, W., Angew. Chem. Int. Ed., 2007, vol. 46, p. 2366. (b) Zhao, Y., Chem. Eur. J., 2018, vol. 24, p. 14001.CrossRefGoogle Scholar
  19. 19.
    So, S.M., Moozeh, K., Lough, A.J., and Chin, J., Angew. Chem. Int. Ed., 2014, vol. 53, p. 829.CrossRefGoogle Scholar
  20. 20.
    (a) Marcotte, N., Fery-Forgues, S., and Lavabre, D., J. Phys. Chem. A, 1999, vol. 103, p. 3163. (b) Marcotte, N., and Fery-Forgues, S., J. Chem. Soc., Perkin Trans. 2, 2000, p. 1711.CrossRefGoogle Scholar
  21. 21.
    The minimization of energy was carried out by MMX (PC MODEL by Serena Software)Google Scholar
  22. 22.
    (a) Connors K.A., Binding Constant: The Measurement of Molecular Complex Stability, New York: John Wiley & Sons, 1987. (b) Benesi, H. and Hildebrand, J.H., J. Am. Chem. Soc., 1949, vol. 71, p. 2703.Google Scholar
  23. 23.
    (a) Hargrove, A.E., Zhong, Z., Sessler, J.L., Anslyn, E.V., New J. Chem., 2010, vol. 34, p. 348. (b) Thordarson, P., Chem. Soc. Rev., 2011, vol. 40, p. 1305.CrossRefGoogle Scholar
  24. 24.
    Gel’man, N.E., Terent’eva, E.A., Shanina, T.M., Kipa-renko, L.M., and Rezl, V., Metody kolichestvennogo orga-nicheskogo elementnogo mikroanaliza (The Methods of Quantitative Organic Elemental Microanalysis), Moscow: Khimiya, 1987.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of ChemistryIndira Gandhi National Tribal University (Central University)AmarkantakIndia

Personalised recommendations