Advertisement

Russian Journal of Organic Chemistry

, Volume 55, Issue 5, pp 682–685 | Cite as

Synthesis of Pyrrole Derivatives Promoted by Fe(ClO4)3/SiO2 as an Environmentally Friendly Catalyst

  • K. Arabpourian
  • F. K. BehbahaniEmail author
Article
  • 2 Downloads

Abstract

N-Substituted pyrroles have been prepared in high isolated yields (702-99%) by the reaction of hexane-2,5-dione with amines or diamines in the presence of Fe(ClO4)3/SiO2 at ambient temperature under solvent-free conditions. The experimental procedure involves simple operations, and the products are readily separated by short column chromatography. The same reaction of hexane-2,5-dione with amines containing electron-acceptor substituents, such as 4-nitroaniline, resulted in fair yields of pyrrole derivatives.

Keywords

Fe(ClO4)3/SiO2 N-substituted pyrroles 2,5-hexadione amines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Najafi, E. and Behbahani, F.K., Russ. J. Org. Chem., 2017, vol. 53, p. 454. doi  https://doi.org/10.1134/S107042801703023X CrossRefGoogle Scholar
  2. 2.
    Behbahani, F.K. and Naderi, M., Russ. J. Gen. Chem., 2016, vol. 86, p. 2804. doi  https://doi.org/10.1134/S1070363216120434 CrossRefGoogle Scholar
  3. 3.
    Behbahani, F.K, and Mohammadloo, M., New Research on Dihydropyridines, Morales, J., Ed., USA: Nova Science, 2016.Google Scholar
  4. 4.
    Heravi, M.M., Behbahani, F.K., Daraie, M., and Oskooie, H.A., Mol. Divers., 2009, vol. 13, p. 375. doi  https://doi.org/10.1007/s11030-009-9118-z CrossRefGoogle Scholar
  5. 5.
    Behbahani, F.K., and Khanehkenari, F., JACSI, 2015, vol. 4, p. 162.Google Scholar
  6. 6.
    Behbahani, F.K., and Nasri, M., JOBARI, 2015, vol. 11, p. 247.Google Scholar
  7. 7.
    Malinka, W., Dziuba, S.M., Rajtar, G., Rubaj, A., and Kleinrokm, Z., Farmaco, 1999, vol. 54, p. 390. doi  https://doi.org/10.1016/S0014-827X(99)00045-2 CrossRefGoogle Scholar
  8. 8.
    Malinka, W., Kaczmarz, M., Redzicka, A., Filipek, B., and Sapa, J., Farmaco, 2005, vol. 60, p. 15. doi  https://doi.org/10.1016/j.farmac.2004.10.002 CrossRefGoogle Scholar
  9. 9.
    Malinka, W., Dziuba, S.M., Rajtar, G., Rejdak, R., Rejdak, K., and Kleinrok, Z., Pharmazie, 2000, vol. 55, p. 9. PMID:10683864Google Scholar
  10. 10.
    Seref, D., Ahmet, K.C., and Nuri, K., Eur. J. Med. Chem., 1999, vol. 34, p. 275. doi 10.1016/S0223-5234 (99)80062-2CrossRefGoogle Scholar
  11. 11.
    Delia, D., Lampis, G., Fioravanti, R., Biava, M., Porretta, C.G., Zanetti, S., and Pompei, R., Antimicrob. Agents Chemother., 1998, vol. 42, p. 3035. doi 10.1128/AAC.42.11.3035CrossRefGoogle Scholar
  12. 12.
    Biava, M., Rossella, F., Giulio, C.P., Delia, D., Carlo, M., and Pompei, R., Bioorg. Med. Chem. Lett., 1999, vol. 9, p. 2893. doi 10.1016/S0960-894X(99)00500-4CrossRefGoogle Scholar
  13. 13.
    Brana, M.F., Fernandez, A., Garrido, M., Rodriguez, M.L.L., Morcillo, M.J. and Sanz, A.M., Chem. Pharm. Bull., 1989, vol. 37, p. 2710. doi  https://doi.org/10.1248/cpb.37.2710 CrossRefGoogle Scholar
  14. 14.
    Cocco, M.T., Congiu, C. and Onnis, V., Bioorg. Med. Chem., 2003, vol. 11, p. 495. doi 10.1016/S0968-0896 (02)00465-0CrossRefGoogle Scholar
  15. 15.
    Sorokina, I.K., Andreeva, N.I., and Golovina, S.M., Pharm. Chem. J., 1989, vol. 23, p. 975. doi  https://doi.org/10.1007/BF00764708 CrossRefGoogle Scholar
  16. 16.
    Carson, J.R., Carmosin, R.J., Pitis, P.M., Vaught, J.L., Almond, H.R., Stables, J.P., Wolf, H.H., Swinyard, E.A., and White, H.S., J. Med. Chem., 1997, vol. 40, p.1578. doi  https://doi.org/10.1021/jm9606655
  17. 17.
    Shibo, J., Hong, L., Shuwen, L., Qian, Z., Yuxian, H., and Asim, K., Antimicrob. Agents Chemother., 2004, vol. 48, p. 4349. doi 10.1128/AAC.48.11.4349- 4359.2004CrossRefGoogle Scholar
  18. 18.
    Samadi, M., and Behbahani, F.K., J. Chil. Chem. Soc., 2015, vol. 60, p. 2881. doi 10.4067/S0717-97072015000200004CrossRefGoogle Scholar
  19. 19.
    Paal, C., Chem. Ber., 1884, vol. 17, p. 2756. doi  https://doi.org/10.1002/cber.188401702228 CrossRefGoogle Scholar
  20. 20.
    Knorr, L., Chem. Ber., 1884, vol. 17, p. 2863.CrossRefGoogle Scholar
  21. 21.
    Patil, V., Sinaha, R., Masand, N., Jain, J., and Dig, J., Nanomater. Bios., 2009, vol. 4, p. 471.Google Scholar
  22. 22.
    De, S.K., Catal. Lett., 2008, vol. 124, p. 174. doi  https://doi.org/10.1007/s10562-008-9461-1 CrossRefGoogle Scholar
  23. 23.
    Burckhalter, H.J., Tendick, F.H., Jones, E.M., Holcomb, W.F., and Rawlins, A.L., J. Am. Chem. Soc., 1946, vol. 66, p. 1894. doi  https://doi.org/10.1021/ja01214a008 CrossRefGoogle Scholar
  24. 24.
    Buu-Hoi, N.P., J. Chem. Soc., 1949, vol. 8, p. 2882. doi  https://doi.org/10.1039/JR9490002882 CrossRefGoogle Scholar
  25. 25.
    Ghorbani-Vaghei, R. and Veisi, H., South. Afr. J. Chem., 2009, vol. 62, p. 33.Google Scholar
  26. 26.
  27. 27.
    Veisi, H., Tetrahedron Lett., 2010, vol. 51, p. 2109. doi  https://doi.org/10.1016/j.tetlet.2010.02.052 CrossRefGoogle Scholar
  28. 28.
    Wu, H., Zheng, Z., Jin, C., Zhang, X., Su, W., and Chen, J., Tetrahedron Lett., 2006, vol. 47, p. 5383. doi  https://doi.org/10.1016/j.tetlet.2006.05.085 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Karaj BranchIslamic Azad UniversityKarajIran

Personalised recommendations