Advertisement

Russian Journal of Organic Chemistry

, Volume 54, Issue 11, pp 1715–1721 | Cite as

Synthesis of Nonracemic Tetrazole GABA Analogs

  • A. N. Reznikov
  • V. A. Ostrovskii
  • Yu. N. KlimochkinEmail author
Article
  • 2 Downloads

Abstract

Nonracemic 3-substituted 4-(1H-tetrazol-1-yl)butanoic acids, analogs of the neurotropic drugs phenibut, tolibut, and baclofen, were synthesized by a three-component reaction of the R-isomers of the corresponding amino acids, triethyl orthoformate, and sodium azide. The key stage of the synthesis is the asymmetric addition of diethyl malonate to nitroalkenes, catalyzed by a Ni(II) complex of (S,S)-N,N′-dibenzylcyclohexane-1,2-diamine.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ostrovskii, V.A., Popova, E.A., and Trifonov, R.E., Adv. Heterocycl. Chem., 2017, vol. 123, p. 1.CrossRefGoogle Scholar
  2. 2.
    Ostrovskii, V.A., Trifonov, R.E., and Popova, E.A., Russ. Chem. Bull., 2012, vol. 64, p. 768. doi  https://doi.org/10.1007/s11172-012-0108-4 CrossRefGoogle Scholar
  3. 3.
    Wei, C.-X., Bian, M., and Gong, G.-H., Molecules, 2015, vol. 20, p. 5528.CrossRefGoogle Scholar
  4. 4.
    Lassalas, P., Gay, B., Lasfargeas, C., James, M.J., Tran, V., Vijayendran, K.G., Brunden, K.R., Kozlowski, M.C., Thomas, C.J., Smith, A.B., Huryn, D.M., and Ballatore, C., J. Med. Chem., 2016, vol. 59, p. 3183.CrossRefGoogle Scholar
  5. 5.
    Subramanian, V., Knight, J.S., Parelkar, S., Anguish, L., Coonrod, S.A., Kaplan, M.J., and Thompson, P.R., J. Med. Chem., 2015, vol. 58, p. 1337.CrossRefGoogle Scholar
  6. 6.
    Zarezin, D.P., Shmatova, O.I., and Nenajdenko, V.G., Mendeleev Commun., 2018, vol. 28, p. 364.CrossRefGoogle Scholar
  7. 7.
    Herr, R.J., Bioorg. Med. Chem., 2002, vol. 10, p. 3379. doi  https://doi.org/10.1016/S0968-0896(02)00239-0 CrossRefGoogle Scholar
  8. 8.
    Matta, C.F., Arabi, A.A., and Weaver, D.F., Eur. J. Med. Chem., 2010, vol. 45, p. 1868.CrossRefGoogle Scholar
  9. 9.
    Allen, F.H., Groom, C.R., Liebeschuetz, J.W., Bardwell, D.A., Olsson, T.S., and Wood, P.A., J. Chem. Inf. Model., 2012, vol. 52, p. 857.CrossRefGoogle Scholar
  10. 10.
    Vilain, S., Cosette, P., Junter, G.-A., and Jouenne, T., J. Antimicrob. Chemother., 2002, vol. 49, p. 315.CrossRefGoogle Scholar
  11. 11.
    Wagner, R., Mollison, K.W., Liu, L., Henry, C.L., Rosenberg, T.A., Bamaung, N., Tu, N., Wiedeman, P.E., Or, Y., Luly, J.R., Lane, B.C., Trevillyan, J., Chen, Y.-Wu., Fey, T., Hsieh, G., Marsh, K., Nuss, M., Jacobson, P.B., Wilcox, D., Carlson, R.P., Carter, G.W., and Djuric, S.W., Bioorg. Med. Chem. Lett., 2005, vol. 15, p. 5340.CrossRefGoogle Scholar
  12. 12.
    Diwakar, S.D., Bhagwat, S.S., Shingare, M.S., and Gill, C.H., Bioorg. Med. Chem. Lett., 2008, vol. 18, p. 4678.CrossRefGoogle Scholar
  13. 13.
    Song, W.H., Liu, M.M., Zhong, D.W., Zhu, Y.L., Bosscher, M., Zhou, L., Ye, D.Y., and Yuan, Z.H., Bioorg. Med. Chem. Lett., 2013, vol. 23, p. 4528. doi  https://doi.org/10.1016/j.bmcl.2013.06.045 CrossRefGoogle Scholar
  14. 14.
    Sotriffer, C.A. and McCammon, J.A., J. Med. Chem., 2001, vol. 44, p. 3043.CrossRefGoogle Scholar
  15. 15.
    Schames, J.R., Henchman, R.H., Siegel, J.S., Sotriffer, C.A., Ni, H., and McCammon, J.A., J. Med. Chem., 2004, vol. 47, p. 1879. doi  https://doi.org/10.1021/jm0341913 CrossRefGoogle Scholar
  16. 16.
    Dayam, R., Al-Mawsawi, L.Q., Zawahir, Z., Witvrouw, M., Debyser, Z., and Neamati, N., J. Med. Chem., 2008, vol. 51, p. 1136.CrossRefGoogle Scholar
  17. 17.
    Crosby, D.C., Lei, X., Gibbs, C.G., McDougall, B.R., Robinson, W.E. Jr., and Reinecke, M.G., J. Med. Chem., 2010, vol. 53, p. 8161.CrossRefGoogle Scholar
  18. 18.
    Popova, E.A., Protas, A.V., and Trifonov, R.E., Anti-Cancer Agents Med. Chem., 2017, vol. 17, p. 1856.Google Scholar
  19. 19.
    Kumar, C.N.S.S.P., Parida, D.K., Santhoshi, A., Kota, A.K., Sridhar, B., and Rao, V.J., Med. Chem. Commun., 2011, vol. 2, p. 486.CrossRefGoogle Scholar
  20. 20.
    Köhler, S.C. and Wiese, M., J. Med. Chem., 2015, vol. 58, p. 3910.CrossRefGoogle Scholar
  21. 21.
    DeMong, D., Dai, X., Hwa, J., Miller, M., Lin, S.-I., Kang, L., Stamford, A., Greenlee, W., Yu, W., Wong, M., Lavey, B., Kozlowski, J., Zhou, G., Yang, D.-Y., Patel, B., Soriano, A., Zhai, Y., Sondey, C., Zhang, H., Lachowicz, J., Grotz, D., Cox, K., Morrison, R., Andreani, T., Cao, Y., Liang, M., Meng, T., McNamara, P., Wong, J., Bradley, P., Feng, K.-I., Belani, J., Chen, P., Dai, P., Gauuan, J., Lin, P., and Zhao, H., J. Med. Chem., 2014, vol. 57, p. 2601.CrossRefGoogle Scholar
  22. 22.
    Wang, S.-B., Deng, X.-Q., Zheng, Y., Yuan, Y.-P., Quan, Z.-S., and Guan, L.-P., Eur. J. Med. Chem., 2012, vol. 56, p. 139.CrossRefGoogle Scholar
  23. 23.
    Yuan, H. and Silverman, R.B., Bioorg. Med. Chem. Lett., 2007, vol. 17, p. 1651. doi  https://doi.org/10.1016/j.bmcl.2006.12.119 CrossRefGoogle Scholar
  24. 24.
    Yuan, H. and Silverman, R.B., Bioorg. Med. Chem., 2006, vol. 14, p. 1331. doi  https://doi.org/10.1016/j.bmc.2005.09.067 CrossRefGoogle Scholar
  25. 25.
    Schwarz, J.B., Colbry, N.L., Zhu, Z., Nichelson, B., Barta, N.S., Lin, K., Hudack, R.A., Gibbons, S.E., Galatsis, P., DeOrazio, R.J., Manning, D.D., Vartanian, M.G., Kinsora, J.J., Lotarski, S.M., Li, Z., Dickerson, M.R., El-Kattan, A., Thorpe, A.J., Donevan, S.D., Taylor, C.P., and Wustrow, D.J., Bioorg. Med. Chem. Lett., 2006, vol. 16, p. 3559. doi  https://doi.org/10.1016/j.bmcl.2006.03.083 CrossRefGoogle Scholar
  26. 26.
    Burgos-Lepley, C.E., Thompson, L.R., Kneen, C.O., Osborne, S.A., Bryans, J.S., Capiris, T., Suman Chauhan, N., Dooley, D.J., Donovan, C.M., Field, M.J., Vartanian, M.G., Kinsora, J.J., Lotarski, S.M., El-Kattan, A., Walters, K., Cherukury, M., Taylor, C.P., Wustrow, D.J., and Schwarz, J.B., Bioorg. Med. Chem. Lett., 2006, vol. 16, p. 2333. doi  https://doi.org/10.1016/j.bmcl.2005.05.016 CrossRefGoogle Scholar
  27. 27.
    Popova, E.A. and Trifonov, R.E., Russ. Chem. Rev., 2015, vol. 84, p. 891. doi  https://doi.org/10.1070/RCR4527 CrossRefGoogle Scholar
  28. 28.
    GABAB receptor pharmacology–A Tribute to Norman Bowery, Blackburn, T.P., Ed., Adv. Pharm., Elsevier. Acad. Press, 2010, vol. 58.Google Scholar
  29. 29.
    Bryans, J.S. and Wustrow, D.J., Med. Res. Rev., 1999, vol. 19, p. 149.CrossRefGoogle Scholar
  30. 30.
    Olpe, H.R., Demiéville, H., Baltzer, V., Bencze, W., Koella, W.P., Wolf, P., and Haas, H.L., Eur. J. Pharmacol., 1978, vol. 52, p. 133. doi  https://doi.org/10.1016/0014-2999(78)90032-8 CrossRefGoogle Scholar
  31. 31.
    Dmitriev, A.V. and Andreev, N.Yu., Farm. Toksigol., 1987, vol. 50, p. 24.Google Scholar
  32. 32.
    Von Rosenstiel, P., Neurother., 2007, vol. 4, p. 84. doi  https://doi.org/10.1016/j.nurt.2006.11.004 CrossRefGoogle Scholar
  33. 33.
    Dambrova, M., Zvejniece, L., Liepinsh, E., Cirule, H., Zharkova, O., Veinberg, G., and Kalvinsh, I., Eur. J. Pharm., 2008, vol. 583, p. 128. doi  https://doi.org/10.1016/j.ejphar.2008.01.015 CrossRefGoogle Scholar
  34. 34.
    Taylor, C.P., Vartanian, M.G., Po-Wai, Y., Bigge, C., Suman-Chauhan, N., and Hill, D.R., Epilepsy Res., 1993, vol. 14, p. 11. doi  https://doi.org/10.1016/0920-1211(93)90070-N CrossRefGoogle Scholar
  35. 35.
    Ordóñez, M., Cativiela, C., and Romero-Estudillo, I., Tetrahedron: Asymmetry, 2016, vol. 27, p. 999. doi  https://doi.org/10.1016/j.tetasy.2016.08.011 CrossRefGoogle Scholar
  36. 36.
    Deng, J., Duan, Z.-C., Huang, J.-D., Hu, X.-P., Wang, D.-Y., Yu, S.-B., Xu, X.-F., and Zheng, Z., Org. Lett., 2007, vol. 9, p. 4825.CrossRefGoogle Scholar
  37. 37.
    Burk, M.J., de Koning, P.D., Grote, T.M., Hoekstra, M.S., Hoge, G., Jennings, R.A., Kissel, W.S., Le, T.V., Lennon, I.C., Mulhern, T.A., Ramsden, J.A., and Wade, R.A., J. Org. Chem., 2003, vol. 68, p. 5731.CrossRefGoogle Scholar
  38. 38.
    Thakur, V.V., Nikalje, M.D., and Sudalai, A., Tetrahedron: Asymmetry, 2003, vol. 14, p. 581. doi  https://doi.org/10.1016/S0957-4166(03)00024-7 CrossRefGoogle Scholar
  39. 39.
    Veverková, E., Bilka, S., Baran, R., and Šebesta, R., Synthesis, 2016, vol. 48, p. 1474.CrossRefGoogle Scholar
  40. 40.
    Camps, P., Muñoz-Torrero, D., and Sánchez, L., Tetrahedron: Asymmetry, 2004, vol. 15, p. 2039. doi  https://doi.org/10.1016/j.tetasy.2004.05.021 CrossRefGoogle Scholar
  41. 41.
    Langlois, N., Dahuron, N., and Wang, H.-S., Tetrahedron, 1996, vol. 52, p. 15117. doi  https://doi.org/10.1016/S0040-4020(96)00946-5 CrossRefGoogle Scholar
  42. 42.
    Yuen, P., Kanter, G.D., Taylor, C.P., and Vartanian, M.G., Bioorg. Med. Chem. Lett., 1994, vol. 4, p. 823. doi  https://doi.org/10.1016/S0960-894X(01)80855-6 CrossRefGoogle Scholar
  43. 43.
    Hoekstra, M.S., Sobieray, D.M., Schwindt, M.A., Mulhern, T.A., Grote, T.M., Huckabee, B.K., Hendrickson, V.S., Franklin, L.C., Granger, E.J., and Karrick, G.L., Org. Proc. Res. Dev., 1997, vol. 1, p. 26.CrossRefGoogle Scholar
  44. 44.
    Reznikov, A.N., Golovin, E.V., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2013, vol. 49, p. 663. doi  https://doi.org/10.1134/S1070428013050047 CrossRefGoogle Scholar
  45. 45.
    Voitekhovich, S.V., Vorob′ev, A.N., Gaponik, P.N., and Ivashkevich, O.A., Chem. Heterocycl. Compd., 2005, vol. 41, p. 999. doi  https://doi.org/10.1007/s10593-005-0267-4 CrossRefGoogle Scholar
  46. 46.
    Putis, S.M., Shuvalova, E.S., and Ostrovskii, V.A., Arkivoc, 2009, vol. iv, p. 64. doi  https://doi.org/10.3998/ark.5550190.0010.406 Google Scholar
  47. 47.
    Evans, D.A., Mito, S., and Seidel, D., J. Am. Chem. Soc., 2007, vol. 129, p. 11583.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Reznikov
    • 1
  • V. A. Ostrovskii
    • 2
  • Yu. N. Klimochkin
    • 1
    Email author
  1. 1.Samara State Technical UniversitySamaraRussia
  2. 2.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia

Personalised recommendations