Advertisement

Russian Journal of Organic Chemistry

, Volume 54, Issue 11, pp 1643–1651 | Cite as

Synthesis and Transformations of 2-(Adamantan-1-yl)aziridine

  • M. V. LeonovaEmail author
  • N. V. Belaya
  • M. R. Baimuratov
  • Yu. N. Klimochkin
Article
  • 4 Downloads

Abstract

Mono- and disubstituted aziridines derived from sterically hindered olefins of the adamantane series are synthesized. The opening of the aziridine ring under the action of acids is quite a regio- and stereoselective process. Depending on the nature of the nucleophilic agent, the opening of the 2,2-disubstituted aziridine ring can occur by the SN1 or SN2 mechanism.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sweeney, J.B., Chem. Soc. Rev., 2002, vol. 31, p. 247.CrossRefGoogle Scholar
  2. 2.
    McCoull, W. and Davis, F.A., Synthesis, 2000, vol. 10, p. 1347.CrossRefGoogle Scholar
  3. 3.
    Hu, X.E., Tetrahedron, 2004, vol. 60, p. 2701.CrossRefGoogle Scholar
  4. 4.
    Aziridines and Epoxides in Organic Synthesis, Yudin, A.K., Ed., Weinheim: Wiley, 2006.Google Scholar
  5. 5.
    Chai, Z., Yang, P.-J., Zhang, H., Wang, S., and Yang, G., Angew. Chem., Int. Ed., 2017, vol. 56, p. 650.CrossRefGoogle Scholar
  6. 6.
    Shiomi, N., Kuroda, M., and Nakamura, S., Chem. Commun., 2017, vol. 53, p. 1817.CrossRefGoogle Scholar
  7. 7.
    Luginina, J. and Turks, M., Chem. Heterocycl. Compd., 2016, vol. 52, p. 773.CrossRefGoogle Scholar
  8. 8.
    Li, D., Yang, D., Wang, L., Liu, X., Jiang, X., and Wang, R., Chem. Eur. J., 2016, vol. 22, p. 17141.CrossRefGoogle Scholar
  9. 9.
    Craig, R.A., O’Connor, N.R., Goldberg, A.F.G., and Stoltz, B.M., Chem. Eur. J., 2014, vol. 20, p. 4806.CrossRefGoogle Scholar
  10. 10.
    Fernández-Megía, E.A., Montaos, M.A., and Sardina, F.J., J. Org. Chem., 2000, vol. 65, p. 6780.CrossRefGoogle Scholar
  11. 11.
    Hodgkinson, T.J. and Shipman, M., Tetrahedron, 2001, vol. 57, p. 4467.CrossRefGoogle Scholar
  12. 12.
    Katoh, T., Itoh, E., Yoshino, T., and Terashima, S., Tetrahedron, 1997, vol. 53, p. 10229.CrossRefGoogle Scholar
  13. 13.
    Coleman, R.S., Li, J., and Navarro, A., Angew. Chem., Int. Ed., 2001, vol. 40, p. 1736.CrossRefGoogle Scholar
  14. 14.
    Gerhart, F., Higgins, W., Tardif, C., and Ducep, J.B., J. Med. Chem., 1990, vol. 33, p. 2157.CrossRefGoogle Scholar
  15. 15.
    Tanner, M.E. and Miao, S., Tetrahedron Lett., 1994, vol. 35, p. 4073.CrossRefGoogle Scholar
  16. 16.
    Jadhav, P.K. and Woerner, F.J., Bioorg. Med. Chem. Lett., 1992, vol. 2, p. 353.CrossRefGoogle Scholar
  17. 17.
    Chakraborty, T. and Gangakhedkar, K.K., Tetrahedron Lett., 1991, vol. 32, p. 1897.CrossRefGoogle Scholar
  18. 18.
    Kolocouris, N., Zoidis, G., Foscolos, G.B., Fytas, G., Prathalingham, R., Kelly, J.M., Naesens, L., and De Clercq, E. Bioorg. Med. Chem. Lett., 2007, vol. 17, p. 4358. doi  https://doi.org/10.1016/j.bmcl.2007.04.108 CrossRefGoogle Scholar
  19. 19.
    Zoidis, G., Fytas, C., Papanastasiou, I., Foscolos, G. B., Fytas, G., Padalko, E., Clercq, E.D., Naesens, L., Neyts, J., and Kolocouris, N., Bioorg. Med. Chem., 2006, vol. 14, p. 3341. doi  https://doi.org/10.1016/j.bmc.2005.12.056 CrossRefGoogle Scholar
  20. 20.
    Wanka, L., Iqbal, K., and Schreiner, P.R., Chem. Rev., 2013, vol. 113, p. 3516.CrossRefGoogle Scholar
  21. 21.
    Zoidis, G., Tsotinis, A., Kolocouris, N., Kelly, J.M., Prathalingam, S.R., Naesens, L., and De Clercq, E., Org. Biomol. Chem., 2008, vol. 6, p. 3177.CrossRefGoogle Scholar
  22. 22.
    Klimochkin, Yu.N., Shiryaev, V.A., and Leonova, M.V., Russ. Chem. Bull., 2015, vol. 64, p. 1473. doi  https://doi.org/10.1007/s11172-015-1035-y CrossRefGoogle Scholar
  23. 23.
    Olah, G.A., Wu, A.H., and Farooq, O., J. Org.Chem., 1989, vol. 54, p. 1452.CrossRefGoogle Scholar
  24. 24.
    Leonova, M.B., Baimuratov, M.R., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2015, vol. 51, p. 26. doi  https://doi.org/10.1134/S1070428015010054 CrossRefGoogle Scholar
  25. 25.
    Baimuratov, M.R., Leonova, M.V., Rybakov, V.B., and Klimochkin, Yu.N., Chem. Heterocycl. Compd., 2015, vol. 51, p. 582. doi  https://doi.org/10.1007/s10593-015-1740-3 CrossRefGoogle Scholar
  26. 26.
    Buckley, B.R., Patel, A.P., and Wijayantha, K.G.U., J. Org. Chem., 2013, vol. 78, p. 1289.CrossRefGoogle Scholar
  27. 27.
    Kelly, J.W., Eskew, N.L., and Evans, S.A., J. Org. Chem., 1986, vol. 51, p. 95.CrossRefGoogle Scholar
  28. 28.
    Sasaki, T., Eguchi, S., and Hirako, Y., Tetrahedron, 1976, vol. 32, p. 437.CrossRefGoogle Scholar
  29. 29.
    Van Ende, D. and Krief, A., Angew. Chem., Int. Ed., 1974, vol. 13, p. 279.Google Scholar
  30. 30.
    Cage Hydrocarbons, Olah, G.A., Ed., New York: Wiley, 1990.Google Scholar
  31. 31.
    Schreiner, P.R., Chernish, L.V., Gunchenko, P.A., Tikhonchuk, E.Yu., Hausmann, H., Serafin, M., Schlecht, S., Dahl, J.E.P., Carlson, R.M.K., and Fokin, A.A., Nature, 2011, vol. 477, p. 308.CrossRefGoogle Scholar
  32. 32.
    Valiulin, R.A., Mamidyala, S., and Finn, M.G., J. Org. Chem., 2015, vol. 80, p. 2740.CrossRefGoogle Scholar
  33. 33.
    Harnying, W., Kitisriworaphan, W., Pohmakotr, M., and Enders, D., Synlett., 2007, vol. 16, p. 2529. doi  https://doi.org/10.1055/s-2007-986642 CrossRefGoogle Scholar
  34. 34.
    Kitamura, M., Hirokawa, Y., and Maezaki, N., Chem. Eur. J., 2009, vol. 15, p. 9911. doi  https://doi.org/10.1002/chem.200901212 CrossRefGoogle Scholar
  35. 35.
    Leonova, M.V., Baimuratov, M.R., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2017, vol. 53, p. 326. doi  https://doi.org/10.1134/S1070428017030034 CrossRefGoogle Scholar
  36. 36.
    Leonova, M.V., Baimuratov, M.R., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2014, vol. 50, p. 1268. doi  https://doi.org/10.1134/S107042801409005X CrossRefGoogle Scholar
  37. 37.
    Kline, M. and Cheatham, S., Magn. Res. Chem., 2003, vol. 41, p. 307.CrossRefGoogle Scholar
  38. 38.
    Alabugin, I.V., Stereoelectronic Effects: a Bridge Between Structure and Reactivity, New York: Wiley, 2016.CrossRefGoogle Scholar
  39. 39.
    Breuer, E., Somekh, L., and Ringel, I., Org. Magn. Res., 1977, vol. 9, p. 328. doi  https://doi.org/10.1002/mrc.1270090609 CrossRefGoogle Scholar
  40. 40.
    Brois, S.J. and Beardsley, G.P., Tetrahedron Lett., 1966, vol. 42, p. 5113. doi  https://doi.org/10.1016/S0040-4039(01)89289-3 CrossRefGoogle Scholar
  41. 41.
    Okoromoba, O.E., Li, Z., Robertson, N., Mashuta, M.S., Couto, U.R., Tormena, C.F., Xu, B., and Hammond, G.B., Chem. Commun., 2016, vol. 52, p. 13353. doi  https://doi.org/10.1039/C6CC07855A CrossRefGoogle Scholar
  42. 42.
    Alvernhe, G.M., Ennakoua, C.M., Lacombe, S.M., and Laurent, A.J., J. Org. Chem., 1981, vol. 46, p. 4938. doi  https://doi.org/10.1021/jo00337a024 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. V. Leonova
    • 1
    Email author
  • N. V. Belaya
    • 1
  • M. R. Baimuratov
    • 1
  • Yu. N. Klimochkin
    • 1
  1. 1.Samara State Technical UniversitySamaraRussia

Personalised recommendations