Advertisement

Russian Journal of Organic Chemistry

, Volume 54, Issue 11, pp 1585–1629 | Cite as

Cross-Conjugated Cyclopentenone Prostaglandins. Recent Advances

  • V. V. Loza
  • A. M. Gimazetdinov
  • M. S. MiftakhovEmail author
Article
  • 6 Downloads

Abstract

The review covers the literature on the total synthesis of cross-conjugated cyclopentenone prostaglandins (PGs), published from 2000 until present. In view of the specific features differentiating cyclopentenone PGs from prostaglandins of other types, special attention in the review is focused on the biochemistry and physiological functions of the most important representatives of cyclopentenone PGs. Data on analogs of cyclopentenone PGs are presented, and certain aspects of structure–activity correlations and potential practical applications of these compounds are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Funk, C.D., Science, 2001, vol. 294, p. 1871. doi  https://doi.org/10.1126/science.294.5548.1871 CrossRefPubMedGoogle Scholar
  2. 2.
    Jahn, U., Galano, J.-M., and Durand, T., Angew. Chem., Int. Ed., 2008, vol. 47, p. 5894. doi  https://doi.org/10.1002/anie.200705122 CrossRefGoogle Scholar
  3. 3.
    Das, S., Chandrasekhar, S., Yadav, J.S., and Grée, R., Chem. Rev., 2007, vol. 107, p. 3286. doi  https://doi.org/10.1021/cr068365a CrossRefPubMedGoogle Scholar
  4. 4.
    Rouzer, C.A. and Marnett, L.J., Chem. Rev., 2003, vol. 103, p. 2239. doi  https://doi.org/10.1021/cr000068x CrossRefPubMedGoogle Scholar
  5. 5.
    Fitzpatrick, F.A. and Wynalda, M.A., J. Biol. Chem., 1983, vol. 258, p. 11713.PubMedGoogle Scholar
  6. 6.
    Lefils-Lacourtablaise, J., Socorro, M., Géloën, A., Daira, P., Debard, C., Loizon, E., Guichardant, M., Dominguez, Z., Vidal, H., Lagarde, M., and Bernoud-Hubac, N., PLOS One, 2013, vol. 8, p. e63997. doi  https://doi.org/10.1371/journal.pone.0063997 Google Scholar
  7. 7.
    Straus, D.S. and Glass, C.K., Med. Res. Rev., 2001, vol. 21, p. 185. doi  https://doi.org/10.1002/med.1006 CrossRefPubMedGoogle Scholar
  8. 8.
    Brunoldi, E.M., Zanoni, G., Vidari, G., Sasi, S., Freeman, M.L., Milne, G.L., and Morrow, J.D., Chem. Res. Toxicol., 2007, vol. 20, p. 1528. doi  https://doi.org/10.1021/tx700231a CrossRefPubMedGoogle Scholar
  9. 9.
    Uchida, K. and Shibata, T., Chem. Res. Toxicol., 2008, vol. 21, p. 138. doi  https://doi.org/10.1021/tx700177j CrossRefPubMedGoogle Scholar
  10. 10.
    Pande, V. and Ramos, M.J., Bioorg. Med. Chem. Lett., 2005, vol. 15, p. 4057. doi  https://doi.org/10.1016/j.bmcl.2005.06.025 CrossRefPubMedGoogle Scholar
  11. 11.
    Kudva, A.K., Kaushal, N., Mohinta, S., Kennet, M.J., August, A., Paulson, R.F., and Prabhu, K.S., PLOS One, 2013, vol. 8, p. e80622. doi  https://doi.org/10.1371/journal.pone.0080622 Google Scholar
  12. 12.
    Verbitski, S.M., Mullally, J.E., Fitzpatrick, F.A, and Ireland, C.M., J. Med. Chem., 2004, vol. 47, p. 2062. doi  https://doi.org/10.1021/jm030448l CrossRefPubMedGoogle Scholar
  13. 13.
    Miftakhov, M.S., Adler, M.E., Akbutina, F.A., and Tolstikov, G.A., Russ. Chem. Rev., 1994, vol. 63, p. 543. doi  https://doi.org/10.1070/RC1994v063n06ABEH000102 Google Scholar
  14. 14.
    Hubich, A.I. and Sholukh, M.V., Biochem. (Moscow), 2006, vol. 71, p. 229. doi  https://doi.org/10.1134/S0006297906030011 CrossRefGoogle Scholar
  15. 15.
    Tsukimoto, A., Sugiyama, R., Abe, M., Nishitsuji, H., Shimizu, Y., Shimotohno, K., Kawai, G., and Takaku, H., Antiviral Res., 2015, vol. 117, p. 1. doi  https://doi.org/10.1016/j.antiviral.2015.01.013 CrossRefPubMedGoogle Scholar
  16. 16.
    Diez-Dacal, B. and Pérez-Sala, D., Cancer Lett., 2012, vol. 320, p. 150. doi  https://doi.org/10.1016/j.canlet.2012.03.003 CrossRefPubMedGoogle Scholar
  17. 17.
    Kobayashi, Y., Murugesh, M.G., and Nakano, M., Tetrahedron Lett., 2001, vol. 42, p. 1703. doi  https://doi.org/10.1016/S0040-4039(00)02329-7 CrossRefGoogle Scholar
  18. 18.
    Kobayashi, Y., Murugesh, M.G., Nakano, M., Takahisa, E., Usmani, S.B., and Ainai, T., J. Org. Chem., 2002, vol. 67, p. 7110. doi  https://doi.org/10.1021/jo020375y CrossRefPubMedGoogle Scholar
  19. 19.
    Nakata, K. and Kobayashi, Y., Org. Lett., 2005, vol. 7, p. 1319.CrossRefPubMedGoogle Scholar
  20. 20.
    Zanoni, G., Porta, A., De Toma, Q., Castronovo, F., and Vidari, G., J. Org. Chem., 2003, vol. 68, p. 6437.CrossRefPubMedGoogle Scholar
  21. 21.
    Chapleo, S.B., Finch, M.A.W., Lee, T.V., Roberts, S.M., and Newton, R.F., J. Chem. Soc., Perkin Trans. 1, 1980, p. 2084.Google Scholar
  22. 22.
    Miller, E., Morel, A., Saso, L., and Saluk, J., Oxid. Med. Cell. Long., 2014, ID 572491, 1. doi  https://doi.org/10.1155/2014/572491 Google Scholar
  23. 23.
    Galano, J.-M., Mas, E., Barden, A., Mori, T.A., Signorini, C., De Felice, C., Barrett, A., Opere, C., Pinot, E., Schwedhelm, E., Benndorf, R., Roy, J., Le-Guennec, J.-Y., Oger, C., and Durand, T., Prostagl. Lipid Mediators, 2013, vol. 107, p. 95. doi  https://doi.org/10.1016/j.prostaglandins.2013.04.003 CrossRefGoogle Scholar
  24. 24.
    Zanoni, G., Brunoldi, E.M., Porta, A., and Vidari, G., J. Org. Chem., 2007, vol. 72, p. 9698.CrossRefPubMedGoogle Scholar
  25. 25.
    Subbanagounder, G., Wong, J.W., Lee, H., Faull, K.F., Miller, E., Witztum, J.L., and Berliner, J.A., J. Biol. Chem., 2002, vol. 277, p. 7271. doi  https://doi.org/10.1074/jbc.M107602200 CrossRefPubMedGoogle Scholar
  26. 26.
    Jung, M.E., Berliner, J.A., Angst, D., Yue, D., Koroniak, L., Watson, A.D., and Li, R., Org. Lett., 2005, vol. 7, p. 3933.CrossRefPubMedGoogle Scholar
  27. 27.
    Jung, M.E., Berliner, J.A., Koroniak, L., Gugiu, B.G., and Watson, A.D., Org. Lett., 2008, vol. 10, p. 4207. doi  https://doi.org/10.1021/ol8014804 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Acharya, H.P. and Kobayashi, Y., Tetrahedron Lett., 2005, vol. 46, p. 8435. doi  https://doi.org/10.1016/j.tetlet.2005.09.193 CrossRefGoogle Scholar
  29. 29.
    Kawashima, H. and Kobayashi, Y., Org. Lett., 2014, vol. 16, p. 2598.CrossRefPubMedGoogle Scholar
  30. 30.
    Egger, J., Bretscher, P., Freigang, S., Kopf, M., and Carreira, E.M., Angew. Chem., Int. Ed., 2013, vol. 52, p. 5382. doi  https://doi.org/10.1002/anie.201300739 CrossRefGoogle Scholar
  31. 31.
    Zhu, C., Shen, X., and Nelson, S.G., J. Am. Chem. Soc., 2004, vol. 126, p. 5352.CrossRefPubMedGoogle Scholar
  32. 32.
    Acharya, H.P. and Kobayashi, Y., Angew. Chem., Int. Ed., 2005, vol. 44, p. 3481. doi  https://doi.org/10.1002/anie.200500534 CrossRefGoogle Scholar
  33. 33.
    Yan, X., Lee, S., Gugiu, B.G., Koroniak, L., Jung, M.E., Berliner, J., Cheng, J., and Li, R., Biochem. Biophys. Res. Commun., 2014, vol. 444, p. 69. doi  https://doi.org/10.1016/j.bbrc.2014.01.016 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Egger, J., Bretscher, P., Freigang, S., Kopf, M., and Carreira, E.M., J. Am. Chem. Soc., 2014, vol. 136, p. 17382.CrossRefPubMedGoogle Scholar
  35. 35.
    Abbasi, S., Kajimoto, K., and Harashima, H., Int. Ed. Nanomed., 2016, vol. 11, p. 2685.Google Scholar
  36. 36.
    Yagami, T., Yamamoto, Y., and Koma, H., Mol. Neurobiol., 2018, vol. 55, p. 2227. doi  https://doi.org/10.1007/s12035-017-0435-4 CrossRefPubMedGoogle Scholar
  37. 37.
    Berger, J. and Moller, D.E., Ann. Rev. Med., 2002, vol. 53, p. 409.CrossRefPubMedGoogle Scholar
  38. 38.
    Lee, E., Yin, Z., Sidoryk-Wegrzynowicz, M., Jiang, H., and Aschner, M., Free Rad. Biol. Med., 2012, vol. 52, p. 1067. doi  https://doi.org/10.1016/j.freeradbiomed.2011.12.016 CrossRefPubMedGoogle Scholar
  39. 39.
    Rasin, M.S., Pulmonologiya, 2013, vol. 2, p. 95.CrossRefGoogle Scholar
  40. 40.
    Scher, J.U. and Pillinger, M.H., Clin. Immunol., 2005, vol. 114, p. 100. doi  https://doi.org/10.1016/j.clim.2004.09.008 CrossRefPubMedGoogle Scholar
  41. 41.
    Brummond, K.M., Sill, P.C., and Chen, H., Org. Lett., 2004, vol. 6, p. 149.CrossRefPubMedGoogle Scholar
  42. 42.
    Brummond, K.M., Sill, P.C., Rickards, B., and Geib, S.J., Tetrahedron Lett., 2002, vol. 43, p. 3735. doi  https://doi.org/10.1016/S0040-4039(02)00633-0 CrossRefGoogle Scholar
  43. 43.
    Fleming, I., Henning, R., Parker, D.C., Plaut, H.E., and Sanderson, P.E.J., J. Chem. Soc., Perkin. Trans. 1, 1995, p. 317.Google Scholar
  44. 44.
    Acharya, H.P. and Kobayashi, Y., Tetrahedron Lett., 2004, vol. 45, p. 1199. doi  https://doi.org/10.1016/j.tetlet.2003.11.143 CrossRefGoogle Scholar
  45. 45.
    Acharya, H.P. and Kobayashi, Y., Tetrahedron, 2006, vol. 62, p. 3329. doi  https://doi.org/10.1016/j.tet.2006.01.051 CrossRefGoogle Scholar
  46. 46.
    Katsuki, T. and Sharpless, K.B., J. Am. Chem. Soc., 1980, vol. 102, p. 5974.CrossRefGoogle Scholar
  47. 47.
    Yang, A., PhD Thesis, Pittsburgh, USA, 2007.Google Scholar
  48. 48.
    Bickley, J.F., Jadhav, V., Roberts, S.M., Santoro, M.G., Steiner, A., and Sutton, P.W., Synlett., 2003, p. 1170. doi  https://doi.org/10.1055/s-2003-39885 Google Scholar
  49. 49.
    Baxter, A.D., Binns, F., Javed, T., Roberts, S.M., Sadler, P., Scheinmann, F., Wakefield, B.J., Lynch, M., and Newton, R.F., J. Chem. Soc., Perkin Trans. 1, 1986, p. 889.Google Scholar
  50. 50.
    Meinwald, J., Labana, S.S., and Chadha, M.S., J. Am. Chem. Soc., 1963, vol. 85, p. 582. doi  https://doi.org/10.1021/ja00888a022 CrossRefGoogle Scholar
  51. 51.
    Vostrikov, N.S., Lobko, I.F., and Miftakhov, M.S., Tetrahedron Lett., 2014, vol. 55, p. 5622. doi  https://doi.org/10.1016/j.tetlet.2014.08.096 CrossRefGoogle Scholar
  52. 52.
    Vostrikov, N.S., Lobko, I.F., Ishimova, D.U., and Miftakhov, M.S., Russ. J. Org. Chem., 2015, vol. 51, p. 1. doi  https://doi.org/10.1134/S1070428015010017 CrossRefGoogle Scholar
  53. 53.
    Tolstikov, G.A., Miftakhov, M.S., Valeev, F.A., Vostrikov, N.S., and Akhmetvaleev, R.R., Zh. Org. Khim., 1984, vol. 20, p. 221.Google Scholar
  54. 54.
    Iqbal, M., Li, Y., and Evans, P., Tetrahedron, 2004, vol. 60, p. 2531. doi  https://doi.org/10.1016/j.tet.2004.01.048 CrossRefGoogle Scholar
  55. 55.
    Iqbal, M., Duffy, P., Evans, P., Cloughley, G., Allan, B., Lledó, A., Verdaguer, X., and Riera, A., Org. Biomol. Chem., 2008, vol. 6, p. 4649. doi  https://doi.org/10.1039/B814619E CrossRefPubMedGoogle Scholar
  56. 56.
    Gibson, S.E. and Stevenazzi, A., Angew. Chem., Int. Ed., 2003, vol. 42, p. 1800. doi  https://doi.org/10.1002/anie.200200547 CrossRefGoogle Scholar
  57. 57.
    Blanco-Urgoiti, J., Añorbe, L., Pérez-Serrano, L., Domínguez, G., and Pérez-Castells, J., Chem. Soc. Rev., 2004, vol. 33, p. 32.CrossRefPubMedGoogle Scholar
  58. 58.
    Van Staden, L.F., Gravestock, D., and Ager, D.J., Chem. Soc. Rev., 2002, vol. 31, p. 195. doi  https://doi.org/10.1039/A908402I CrossRefPubMedGoogle Scholar
  59. 59.
    Taber, D.F. and Teng, D., J. Org. Chem., 2002, vol. 67, p. 1607.CrossRefPubMedGoogle Scholar
  60. 60.
    Taber, D.F. and Tian, W., J. Org. Chem., 2008, vol. 73, p. 7560.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Nani, R.R., PhD Thesis, Pasadena, USA, 2013.Google Scholar
  62. 62.
    Egger, J., Fischer, S., Bretscher, P., Freigang, S., Kopf, M., and Carreira, E.M., Org. Lett., 2015, vol. 17, p. 4340.CrossRefPubMedGoogle Scholar
  63. 63.
    Kim, E.-H. and Surh, Y.-J., Biochem. Pharm., 2006, vol. 72, p. 1516. doi  https://doi.org/10.1016/j.bcp.2006.07.030 CrossRefPubMedGoogle Scholar
  64. 64.
    Kim, N.-J., Moon, H., Park, T., Yun, H., Jung, J.-W., Chang, D.-J., Kim, D.-D., and Suh, Y.-G., J. Org. Chem., 2010, vol. 75, p. 7458.CrossRefPubMedGoogle Scholar
  65. 65.
    Lu, Y., Nguyen, P.L., Lévaray, N., and Lebel, H., J. Org. Chem., 2013, vol. 78, p. 776.CrossRefPubMedGoogle Scholar
  66. 66.
    Hegde, S., Kaushal, N., Ravindra, K.C., Chiaro, C., Hafer, K.T., Gandhi, U.H., Thompson, J.T., Van den Heuvel, J.P., Kennett, M.J., Hankey, P., Paulson, R.F., and Prabhu, K.S., Blood, 2011, vol. 118, p. 6909. doi  https://doi.org/10.1182/blood-2010-11-317750 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Prabhu, K.S., Paulson, R.F., Hegde, S, Kaushal, N., and Gandhi, U.N., WO Patent Appl. no. 2013/003729A1, 2013.Google Scholar
  68. 68.
    Williams, S.A., Anderson, W.C., Santaguida, M.T., and Dylla, S.J., Lab. Invest., 2013, vol. 93, p. 970. doi  https://doi.org/10.1038/labinvest.2013.92 CrossRefPubMedGoogle Scholar
  69. 69.
    Nicolaou, K.C., Heretsch, P., El Marrouni, A., Hale, C.R.H., Pulukuri, K.K., Kudva, A.K., Narayan, V., and Prabhu, K.S., Angew. Chem., Int. Ed., 2014, vol. 53, p. 10443. doi  https://doi.org/10.1002/anie.201404917 CrossRefGoogle Scholar
  70. 70.
    Nicolaou, K.C., Pulukuri, K.K., Yu, R., Rigol, S., Heretsch, P., Grove, C.I., Hale, C.R.H., and El Marrouni, A., Chem. Eur. J., 2016, vol. 22, p. 8559. doi  https://doi.org/10.1002/chem.201601449 CrossRefPubMedGoogle Scholar
  71. 71.
    Trost, B.M. and Bunt, R.C., Angew. Chem., Int. Ed., 1996, vol. 35, p. 99. doi  https://doi.org/10.1002/anie.199600991 CrossRefGoogle Scholar
  72. 72.
    Carreira, E.M., Singer, R.A., and Lee, W., J. Am. Chem. Soc., 1994, vol. 116, p. 8837.CrossRefGoogle Scholar
  73. 73.
    Glaus, F. and Altmann, K.-H., Chimia, 2013, vol. 67, p. 227. doi  https://doi.org/10.2533/chimia.2013.227 CrossRefPubMedGoogle Scholar
  74. 74.
    Frick, J.A., Klassen, J.B., Bathe, A., Abramson, J.M., and Rapoport, H., Synthesis, 1992, vol. 7, p. 621. doi  https://doi.org/10.1055/s-1992-26176 CrossRefGoogle Scholar
  75. 75.
    Bal, B.S., Childers, W.E., and Pinnick, H.W., Tetrahedron, 1981, vol. 37, p. 2091. doi  https://doi.org/10.1016/S0040-4020(01)97963-3 CrossRefGoogle Scholar
  76. 76.
    Mercadante, M.A., Kelly, C.B., Bobbitt, J.M., Tilley, L.J., and Leadbeater, N.E., Nature Prot., 2013, vol. 8, p. 666. doi  https://doi.org/10.1038/nprot.2013.028 CrossRefGoogle Scholar
  77. 77.
    Nicolaou, K.C., Pulukuri, K.K., Rigol, S., Heretsch, P., Yu, R., Grove, C.I., Hale, C.R.H., El Marrouni, A., Fetz, V., Brönstrup, M., Aujay, M., Sandoval, J., and Gavrilyuk, J., J. Am. Chem. Soc., 2016, vol. 138, p. 6550.CrossRefPubMedGoogle Scholar
  78. 78.
    Nicolaou, K.C., Heretsch, P., Hale, C.R.H., El Marrouni, A., Pulukuri, K.K., Yu, R., and Grove, C.I., WO Patent Appl. no. 2015/048268, 2015.Google Scholar
  79. 79.
    Kitade, M., Tanaka, H., Oe, S., Iwashima, M., Iguchi, K., and Takahashi, T., Chem. Eur. J., 2006, vol. 12, p. 1368. doi  https://doi.org/10.1002/chem.200500793 CrossRefPubMedGoogle Scholar
  80. 80.
    Fukushima, S., Kishimoto, S., Takeuchi, Y., and Fukushima, M., Adv. Drug Delivery Rev., 2000, vol. 45, p. 65. doi  https://doi.org/10.1016/S0169-409X(00)00101-0 CrossRefGoogle Scholar
  81. 81.
    Fukushima, S., Takeuchi, Y., Kishimoto, S., Yamashita, S., Uetsuki, K., Shirakawa, S., Suzuki, M., Furuta, K., Noyori, R., Sasaki H., Kikuchi, Y., Kita, T., Yamori, T., Sawada, J., Kojima, M., Hazato, A., Kurozumi, S., and Fukushima, M., Anti-Cancer Drugs, 2001, vol. 12, p. 221.CrossRefPubMedGoogle Scholar
  82. 82.
    Hirata, Y., Furuta, K., Suzuki, M., Oh-hashi, K., Ueno, Y., and Kiuchi, K., Brain Res., 2012, vol. 1482, p. 91. doi  https://doi.org/10.1016/j.brainres.2012.09.008 CrossRefPubMedGoogle Scholar
  83. 83.
    Suzuki, M., Kiho, T., Tomokiyo, K., Furuta, K., Fukushima, S., Takeuchi, Y., Nakanishi, M., and Noyori, R., J. Med. Chem., 1998, vol. 41, p. 3084. doi  https://doi.org/10.1021/jm9801657 CrossRefPubMedGoogle Scholar
  84. 84.
    Furuta, K., Tomokiyo, K., Satoh, T., Watanabe, Y., and Suzuki, M., ChemBioChem, 2000, vol. 1, p. 283. doi  https://doi.org/10.1002/1439-7633(20001117)1:4<283::AIDCBIC283>3.0.CO;2-O CrossRefPubMedGoogle Scholar
  85. 85.
    Furuta, K., Maeda, M., Hirata, Y., Shibata, S., Kiuchi, K., and Suzuki, M., Bioorg. Med. Chem. Lett., 2007, vol. 17, p. 5487. doi  https://doi.org/10.1016/j.bmcl.2006.12.004 CrossRefPubMedGoogle Scholar
  86. 86.
    Weaving, R., Roulland, E., Monneret, C., and Florent, J.-C., Tetrahedron Lett., 2003, vol. 44, p. 2579. doi  https://doi.org/10.1016/S0040-4039(03)00237-5 CrossRefGoogle Scholar
  87. 87.
    Łukasik, B., Mikołajczyk, M., Bujacz, G., and Zurawiński, R., Org. Biomol. Chem., 2015, vol. 13, p. 807. doi  https://doi.org/10.1039/C4OB01535E CrossRefPubMedGoogle Scholar
  88. 88.
    Żuraviwiński, R., Mikina, M., and Mikołajczyk, M., Tetrahedron: Asymmetry, 2010, vol. 21, p. 2794. doi  https://doi.org/10.1016/j.tetasy.2010.11.007 CrossRefGoogle Scholar
  89. 89.
    Chen, M. and Hartwig, J.F., Angew. Chem., Int. Ed., 2014, vol. 53, p. 8691. doi  https://doi.org/10.1002/anie.201403844 CrossRefGoogle Scholar
  90. 90.
    Sugiura, M., Kinoshita, R., and Nakajima, M., Org. Lett., 2014, vol. 16, p. 5172.CrossRefPubMedGoogle Scholar
  91. 91.
    Dübon, P., Schelwies, M., and Helmchen, G., Chem Eur. J., 2008, vol. 14, p. 6722. doi  https://doi.org/10.1002/chem.200800495 CrossRefPubMedGoogle Scholar
  92. 92.
    Schelwies, M., Dübon, P., and Helmchen, G., Angew. Chem., Int. Ed., 2006, vol. 45, p. 2466. doi  https://doi.org/10.1002/anie.200503945 CrossRefGoogle Scholar
  93. 93.
    Iqbal, M. and Evans, P., Tetrahedron Lett., 2003, vol. 44, p. 5741. doi  https://doi.org/10.1016/S0040-4039(03)01297-8 CrossRefGoogle Scholar
  94. 94.
    Arisetti, N. and Reiser, O., Org. Lett., 2015, vol. 17, p. 94.CrossRefPubMedGoogle Scholar
  95. 95.
    Żurawiński, R., Mikołajczyk, M., Ciećlak, M., Królewska, K., and Kaźmierczak-Barańska, J., Org. Biomol. Chem., 2015, vol. 13, p. 7000. doi  https://doi.org/10.1039/C5OB00550G CrossRefPubMedGoogle Scholar
  96. 96.
    Tanaka, H., Hasegawa, T., Kita, N., Nakahara, H., Shibata, T., Oe, S., Ojika, M., Uchida, K., and Takahashi, T., Chem. Asian J., 2006, vol. 1, p. 669. doi  https://doi.org/10.1002/asia.200600172 CrossRefPubMedGoogle Scholar
  97. 97.
    Vostrikov, N.S., lobko, I.F., Spirikhin, L.V., and Miftakhov, M.S., Russ. J. Org. Chem., 2016, vol. 52, p. 1765. doi  https://doi.org/10.1134/S1070428016120095 CrossRefGoogle Scholar
  98. 98.
    Vostrikov, N.S., Lobko, I.F., Spirikhin, L.V., Vakhitova, Y.V., Pivnitsky, K.K., and Miftakhov, M.S., Mendeleev Commun., 2017, vol. 27, p. 125.CrossRefGoogle Scholar
  99. 99.
    Ratnayake, A.S., Bugni, T.S., Veltri, C.A., Skalicky, J.J., and Ireland, C.M., Org. Lett., 2006, vol. 8, p. 2171.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Mullally, J.E. and Fitzpatrick, F.A., Mol. Pharm., 2002, vol. 62, p. 351.CrossRefGoogle Scholar
  101. 101.
    Woodward, D.F., Wang, J.W., and Poloso, N.J., Pharm. Rev., 2013, vol. 65, p. 1135. doi  https://doi.org/10.1124/pr.112.007088 CrossRefPubMedGoogle Scholar
  102. 102.
    Kozak, K.R., Morrow, B.C., Wang, L.H., Ma, L.H., Weinander, R., Jacobsson, P.J., and Marnett, L., J. Biol. Chem., 2002, vol. 277, p. 44877. doi  https://doi.org/10.1074/jbc.M206788200 CrossRefPubMedGoogle Scholar
  103. 103.
    Ladin, D.A., Soliman, E., Escobedo, R., Fitzgerald, T.L., Yang, L.V., Burns, C., and Van Dross, R., Mol. Cancer Therapeutics, 2017, vol. 16, p. 838. doi  https://doi.org/10.1158/1535-7163.MCT-16-0484 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Loza
    • 1
  • A. M. Gimazetdinov
    • 1
  • M. S. Miftakhov
    • 1
    Email author
  1. 1.Ufa Institute of Chemistry, Ufa Research CenterRussian Academy of SciencesUfa, BashkortostanRussia

Personalised recommendations