Advertisement

Russian Journal of Applied Chemistry

, Volume 92, Issue 5, pp 682–688 | Cite as

Microstructure of Products of Isoprene Polymerization on Titanium–Magnesium Catalysts: an NMR Study

  • N. MakhiyanovEmail author
  • O. V. Smetannikov
Macromolecular Compounds and Polymeric Materials
  • 7 Downloads

Abstract

Polyisoprenes synthesized on titanium–magnesium catalysts were studied by 1H and 13C NMR spectroscopy (Larmor’s frequency for protons 700 MHz). The problems concerning the accuracy of determining the microstructure of polyisoprenes with high content of trans units are discussed. As demonstrated for a series of samples with varied configurational and isomeric composition, the cis and trans units are distributed in the macromolecules in the block (continuous) fashion, whereas the 3,4-units are distributed randomly.

Keywords

isoprene polymerization titanium–magnesium catalyst polyisoprene NMR spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weitz, H.M. and Loser, E., Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley–VCH, 2012, vol. 20, pp. 83–101.Google Scholar
  2. 2.
    Sharkey, Th.D. and Monson, R.K., Plant, Cell Environ., 2017, vol. 40, no. 9, pp. 1671–1678.CrossRefGoogle Scholar
  3. 3.
    Hirata, K., Moriguchi, N., Sasaki, H., Koda, D., Kanbara, H., Kuwahara, Sh., Chapman, B., Tran, H., Iacaponi, J., Pillari, L., and McPhee, D., Rubber World, 2017, vol. 256, no. 6, pp. 50–55.Google Scholar
  4. 4.
    Rozentsvet, V.A., Khachaturov, A.S., and Ivanova, V.P., Polym. Sci., Ser. A, 2009, vol. 51, no. 8, pp. 870–876.CrossRefGoogle Scholar
  5. 5.
    Rozentsvet, V.A., Korovina, N.A., Stotskaya, O.A., Kuznetsova, M.G., Peruch, F., and Kostjuk, S.V., J. Polym. Sci., Part A: Polym. Chem., 2016, vol. 54, pp. 2430–2442.CrossRefGoogle Scholar
  6. 6.
    Zhang, J. and Xue, Zh., Polym. Test., 2011, vol. 30, no. 7, pp. 753–759.CrossRefGoogle Scholar
  7. 7.
    Tanaka, Y., Sato, H., and Seimiya, T., Polym. J., 1975, vol. 7, no. 2, pp. 264–266.CrossRefGoogle Scholar
  8. 8.
    Tanaka, Y. and Sato, H., Polymer, 1976, vol. 17, no. 2, pp. 113–116.CrossRefGoogle Scholar
  9. 9.
    Khachaturov, A.S. and Ivanova, V.P., Zh. Vses. Khim. O–va. im. D.I. Mendeleeva, 1991, vol. 36, no. 2, pp. 230–237.Google Scholar
  10. 10.
    Smetannikov, O.V., Mushina, E.A., Chinova, M.S., Frolov, V.M., Podol’skii, Yu.Ya., Bondarenko, G.N., Shklyaruk, B.F., and Antipov, E.M., Polym. Sci., Ser. A, 2006, vol. 48, no. 8, pp. 793–797.CrossRefGoogle Scholar
  11. 11.
    Smetannikov, O.V., Tavtorkin, A.N., Nifant’ev, I.E., Chinova, M.S., and Gavrilenko, I.F., Polym. Sci., Ser. B, 2013, vol. 55, nos. 7–8, pp. 453–459.CrossRefGoogle Scholar
  12. 12.
    Nifant’ev, I.E., Smetannikov, O.V., Tavtorkin, A.N., Chinova, M.S., and Ivchenko, P.V., Petrol. Chem., 2016, vol. 56, no. 6, pp. 480–490.CrossRefGoogle Scholar
  13. 13.
    Mingaleev, V.Z., Ionova, I.A., Chirko, K.S., Mingaleeva, G.R., Sagitov, D.R., and Yaparova, A.G., Polym. Sci., Ser. B, 2017, vol. 59, no. 4, pp. 397–404.CrossRefGoogle Scholar
  14. 14.
    Liu, X., Li, W., Niu, Q., Wang, R., and He, A., Polymer, 2018, vol. 140, pp. 255–268.CrossRefGoogle Scholar
  15. 15.
    Ray, G.J. and Szabo, C.M., eMagRes, 2013, vol. 2, no. 2, pp. 193–204.Google Scholar
  16. 16.
    Hatada, K., Kitayama, T., Terawaki, J., Tanaka, Y., and Sato, H., Polym. Bull., 1980, vol. 2, no. 11, pp. 791–797.CrossRefGoogle Scholar
  17. 17.
    Schilling, F.C., Bovey, F.A., Anandakumaran, K., and Woodward, A.E., Macromolecules, 1985, vol. 18, no. 12, pp. 2688–2695.CrossRefGoogle Scholar
  18. 18.
    Makhiyanov, N., Polym. Sci., Ser. A, 2017, vol. 59, no. 2, pp. 269–279.CrossRefGoogle Scholar
  19. 19.
    Fulmer, G.R., Miller, A.J.M., Sherden, N.H., Gottlieb, H.E., Nudelman, A., Stoltz, B.M., Bercaw, J.E., and Goldberg, K.I., Organometallics, 2010, vol. 29, no. 9, pp. 2176–2179.CrossRefGoogle Scholar
  20. 20.
    Morese-Seguela, B., St-Jacques, M., Renaud, J.M., and Prud’homme, J., Macromolecules, 1977, vol. 10, no. 2, pp. 431–432.CrossRefGoogle Scholar
  21. 21.
    Ibata, K., Mizuno, M., Takigawa, T., and Tanaka, Y., Biochem. J., 1983, vol. 213, no. 2, pp. 305–311.CrossRefGoogle Scholar
  22. 22.
    Tanaka, Y., Sato, H., Kageyu, A., and Tomita, T., Biochem. J., 1987, vol. 243, no. 2, pp. 481–485.CrossRefGoogle Scholar
  23. 23.
    Misiak, M., Kozminski, W., Kwasiborska, M., Wojcik, J., Ciepichal, E., and Swiezewska, E., Magn. Reson. Chem., 2009, vol. 47, no. 10, pp. 825–829.CrossRefGoogle Scholar
  24. 24.
    Hesek, D., Lee, M., Zajíček, J., Fisher, J.E., and Mobachery, Sh., J. Am. Chem. Soc., 2012, vol. 134, no. 33, pp. 13881–13888.CrossRefGoogle Scholar
  25. 25.
    Makhiyanov, N., Akhmetov, I.G., and Vagizov, A.M., Polym. Sci., Ser. A, 2012, vol. 54, no. 12, pp. 942–949.CrossRefGoogle Scholar
  26. 26.
    Mochel, V.D., J. Polym. Sci., Part A-1: Polym. Chem., 1972, vol. 10, no. 4, pp. 1009–1018.CrossRefGoogle Scholar
  27. 27.
    Tanaka, R., Yuuya, K., Sato, H., Eberhardt, P., Nakayama, Y., and Shiono, T., Polym. Chem., 2016, vol. 7, no. 6, pp. 1239–1243.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.PAO NizhnekamskneftekhimNizhnekamsk, TatarstanRussia
  2. 2.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations