Advertisement

Russian Journal of Applied Chemistry

, Volume 92, Issue 5, pp 655–660 | Cite as

Catalytic Activity of Highly Dispersed Mn2O3-Bi2O3-ZrO2-CeO2 Solid Solutions (M = Nd, Sm, Gd) in the Reaction of Carbon Monoxide Oxidation

  • E. Yu. LibermanEmail author
  • E. S. Pod”el’nikova
  • E. A. Simakina
  • T. V. Kon’kova
  • B. S. Kleusov
Catalysis
  • 4 Downloads

Abstract

Method of coprecipitation with a subsequent thermal treatment was used to synthesize highly dispersed Mn2O3-Bi2O3-ZrO2-CeO2 solid solutions. The elemental and phase compositions, texture characteristics, dispersity, and morphology were examined. The thus synthesized samples exhibit a high activity in the reaction of CO oxidation. It was shown that the nature of doping ions (Bi3+, Nd3+, Sn3+, Gd3+) affects the catalytic activity of the materials. The highest catalytic activity was observed for the Gd0.05Bi0.05Zr0.18Ce0.72O2 sample.

Keywords

cerium dioxide solid solutions CO oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Popova, N.M., Katalizatory ochistki gazovykh vybrosov promyshlennykh proizvodstv (Catalysts for Purification of Industrial Gas Discharges), Alma-Ata: Nauka KazSSR, 1991.Google Scholar
  2. 2.
    Ostroushko, A.A., Tekhnologiya izgotovleniya katalizatorov. Termokataliticheskaya ochistka otkhodyashchikh gazov v promyshlennosti, energetike, na transporte (Fabrication Technology of Catalysts, Thermocatalytic Purification of Effluent Gases in Industry, Power Engineering, and Transport), Yekaterinburg: Ural. Gos. Univ., 2002.Google Scholar
  3. 3.
    Krylov, O.V., Minachev, Kh.M., and Panchishnyi, V.I., Usp. Khim., 1991, vol. 60, no. 3, pp. 634–648.CrossRefGoogle Scholar
  4. 4.
    Ivanov, V.K., Shcherbakov, A.B., Baranchikov, A.E., and Kozik, V.V., Nanokristallicheskii dioksid tseriya: svoistva, poluchenie, primenenie (Nanocrystalline Cerium Dioxide: Properties, Synthesis, Application), Tomsk: Tomsk Univ., 2013.Google Scholar
  5. 5.
    Ostroushko, A.A., Russkikh, O.V., Porsin, A.V., and Pivchenko, S.V., Russ. J. Appl. Chem., 2011, vol. 84, no. 3, pp. 372–376.CrossRefGoogle Scholar
  6. 6.
    Zagainov, I.V., Fedorov, S.V., Konovalov, A.A., and Antonova, O.S., Mater. Lett., 2017, vol. 203, pp. 9–12.CrossRefGoogle Scholar
  7. 7.
    Lei, C., Changiun, N., Zhongshan, Y., and Shudong, W., Catal. Commun., 2009, no. 10, pp. 1192–1195.CrossRefGoogle Scholar
  8. 8.
    Kuznetsova, T.G. and Sadykov, V.A., Kinet. Catal., 2008, vol. 49, no. 6, pp. 840–858.CrossRefGoogle Scholar
  9. 9.
    Malyutin, A.V., Liberman, E.Yu., Mikhailichenko, A.I., Avetisov, I.Kh., Koshkin, A.G., and Kon'kova, T.V., Katal. Promsti, 2013, no. 3, pp. 54–59.Google Scholar
  10. 10.
    Zagainov, I.V., Appl. Nanosci., 2017, vol. 2017, no. 8, pp. 871–874.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. Yu. Liberman
    • 1
    Email author
  • E. S. Pod”el’nikova
    • 1
  • E. A. Simakina
    • 1
  • T. V. Kon’kova
    • 1
  • B. S. Kleusov
    • 2
  1. 1.Dmitry Mendeleev University of Chemical Technology of RussiaMoscowRussia
  2. 2.NII Grafit Research Institute of Graphite-based Construction Materials AOMoscowRussia

Personalised recommendations