Advertisement

Russian Journal of Applied Chemistry

, Volume 92, Issue 5, pp 607–613 | Cite as

Laboratory Reactor for Visual Examination of Formation/Decomposition of Gas Hydrates in Water-Oil Systems

  • T. P. AdamovaEmail author
  • A. Yu. Manakov
  • A. S. Stoporev
Physicochemical Studies of Systems and Processes
  • 7 Downloads

Abstract

Design of an installation for studying the formation and decomposition of gas hydrates in water-oil systems via visual examination and video recording under magnifications of up to 50 and some results obtained by using this installation are reported. Information is presented about the growth rates of hydrate films at water-oil interfaces, specific morphological features of hydrate crystals formed in the process and agglomerates of these, and changes in the hydrate formations in the course of time. This method is direct and the most informative way to examine processes occurring in systems of this kind. The results obtained can be used to control the hydrate formation in bores of oil-producing wells and infield pipelines.

Keywords

optical cell gas hydrates oil crystal growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Istomin, V.A. and Kvon, V.G., Preduprezhdenie i likvidatsiya gazovykh gidratov v sistemakh dobychi gaza (Prevention and Elimination of Gas Hydrates in Systems for Gas Extraction), Moscow: Inf.-Reklamn. Tsentr Gazprom, 2004.Google Scholar
  2. 2.
    Chong, Z.R., Yang, S.H.B., Babu, P., Linga, P., and Li, X.S., Appl. Energ., 2016, vol. 162, pp. 1633–1652.CrossRefGoogle Scholar
  3. 3.
    Sloan, E.D., Hydrate Engineering, Henry L. Doherty series, vol. 21, Ben Bloys, J., Ed.,. Texas, Richardson, 2000.Google Scholar
  4. 4.
    Sloan, E.D. and Koh, C.A., Clathrate Hydrates of Natural Gases, Boca Rator: CRC Press, 2008, 3rd ed.Google Scholar
  5. 5.
    Aman, Z.M. and Koh, C.A., Chem. Soc. Rev., 2016, vol. 45,no. 6, pp. 1678–1690.CrossRefGoogle Scholar
  6. 6.
    Sum, A.K., Koh, C.A., and Sloan, E.D., Energy Fuels, 2012, vol. 26, pp. 4046–4052.CrossRefGoogle Scholar
  7. 7.
    Sum, A.K., Koh, C.A., and Sloan, E.D., Ind. Eng. Chem. Res., 2009, vol. 48, pp. 7457–7465.CrossRefGoogle Scholar
  8. 8.
    Zerpa, L.E., Salager, J.-L., Koh, C.A., Sloan, E.D., and Sum, A.K., Ind. Eng. Chem. Res., 2011, vol. 50, pp. 188–197.CrossRefGoogle Scholar
  9. 9.
    Parent, J.S. and Bishnoi, P.R., Chem. Eng. Commun., 1996, vol. 144,no. 1, pp. 51–64.CrossRefGoogle Scholar
  10. 10.
    Subramanian, S. and Sloan, E.D. Jr., Fluid Phase Equilib., 1999, vol. 158, pp. 813–820.CrossRefGoogle Scholar
  11. 11.
    Hashimoto, S., Sugahara, T., Moritoki, M., Sato, H., and Ohgaki, K., Chem. Eng. Sci., 2008, vol. 63,no. 4, pp. 1092–1097.CrossRefGoogle Scholar
  12. 12.
    Sugahara, T., Murayama, S., Hashimoto, S., and Ohgaki, K., Fluid Phase Equilib., 2005, vol. 233, pp. 190–193.CrossRefGoogle Scholar
  13. 13.
    Nakano, S., Moritoki, M., and Ohgaki, K., J. Chem. Eng. Data, 1999, vol. 44,no. 2, pp. 254–257.CrossRefGoogle Scholar
  14. 14.
    Smelik, E.A. and King, H.E., Am. Mineral., 1997, vol. 82,nos. 1–2, pp. 88–98.CrossRefGoogle Scholar
  15. 15.
    Stern, L.A., Hogenboom, D.L., Durham, W.B., Kirby, S.H., and Chou, I.-M., J. Phys. Chem. B, 1998, vol. 102,no. 15, pp. 2627–2632.CrossRefGoogle Scholar
  16. 16.
    Chou, I.-M., Pasteris, J.D., and J.C., Geochim. Cosmochim. Acta, 1990, vol. 43,no. 3, pp. 535–543.CrossRefGoogle Scholar
  17. 17.
    Ohmura, R., Kashiwazaki, S., and Mori, Y.H., J. Cryst. Growth, 2000, vol. 218,nos. 2–4, pp. 372–380.CrossRefGoogle Scholar
  18. 18.
    Makogon, Yu.F. and Holsti, J.S., Ross. Khim. Zh., 2003, vol. 47,no. 3, pp. 43–48.Google Scholar
  19. 19.
    Ota, M., Morohashi, K., Abe, Y., Watanabe, M., and Inomata, H., Energy Convers. Manage., 2005, vol. 46,nos. 11–12, pp. 1680–1691.CrossRefGoogle Scholar
  20. 20.
    Saito, K., Kishimoto, M., Tanaka, R., and Ohmura, R., Cryst. Growth Des., 2010, vol. 11,no. 1, pp. 295–301.CrossRefGoogle Scholar
  21. 21.
    Muraoka, M. and Yamamoto, Y., Rev. Sci. Instr., 2017, vol. 88,no. 6. Art. 064503.Google Scholar
  22. 22.
    Stoporev, A.S., Semenov, A.P., Medvedev, V.I., Sizikov, A.A., Gushchin, P.A., Vinokurov, V.A., and Manakov, A.Y., J. Cryst. Growth, 2018, vol. 485, pp. 54–68.CrossRefGoogle Scholar
  23. 23.
    Gao, S., Energy Fuels, 2008, vol. 22, pp. 3150–3153.CrossRefGoogle Scholar
  24. 24.
    Aspenes, G., Høiland, S., Borgund, A.E., and Barth, T., Energy Fuels, 2009, vol. 24,no. 1, pp. 483–491.CrossRefGoogle Scholar
  25. 25.
    Huo, Z., Freer, E., Lamar, M., Sannigrahi, B., Knauss, D. M., and Sloan, E.D. Jr., Chem. Eng. Sci., 2001, vol. 56,no. 17, pp. 4979–4991.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. P. Adamova
    • 1
    • 2
    Email author
  • A. Yu. Manakov
    • 1
    • 3
  • A. S. Stoporev
    • 1
    • 3
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Pedagogical UniversityNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations