Russian Journal of Applied Chemistry

, Volume 91, Issue 11, pp 1882–1889 | Cite as

Kinetic Patterns of Condensation of Alkyl- and Cycloalkylcyclopentanones with Dihydric Alcohols in the Presence of Polyoxomolybdate Modified with Oxides of Rare-Earth Elements

  • Kh. M. Alimardanov
  • F. M. VelievaEmail author
  • H. R. Dadashova


The results of condensation of C5–C7 alkyl- and cycloalkyl-substituted cyclopentanones with diatomic vicinal alcohols in the presence of polyoxomolybdate modified with gadolinium oxide are considered. Kinetic patterns are investigated and a kinetic model of the process is proposed. It was established that alkyl- and cycloalkyl derivatives of dioxaspironone are formed directly by two parallel-consecutive routes and through the stages of the preparation of the corresponding hemiacetal. The ratio of the rate constants of these routes depends on the composition and structure of the starting ketones and diols.


alkyl cyclopentanones vicinal diols kinetic model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Traven’, V.F., Organicheskaya khimiya (Organic Chemistry), vol. 2, Moscow: Binom, 2013.Google Scholar
  2. 2.
    Kheyfits, L.A. and Dashunin, V.M., Dushistyye veshchestva i drugiye produkty dlya parfyumerii (Perfumes and Other Perfumery Products), Moscow: Khimiya, 1994.Google Scholar
  3. 3.
    Osnovy organicheskoi khimii dushistykh veshchestv dlya prikladnoi estetiki i aromaterapii (Basics of Organic Chemistry of Fragrant Substances for Applied Aesthetics and Aromatherapy), Soldatenkov, A.T., Ed., Moscow: IKTS “Akademkniga,” 2006.Google Scholar
  4. 4.
    Mashkovskii, M.D., Lekarstvennyye sredstva (Drugs), ch. 1, Moscow: Meditsina, 2000.Google Scholar
  5. 5.
    Nedumaran, D. and Pandurangan, A., Micropor. Water, 2013, vol. 169, pp. 25–34.CrossRefGoogle Scholar
  6. 6.
    Miyake, H., Nakao, Y., and Sasaki, M., Chem. Lett., 2007, vol. 36, no. 1, pp. 104–105.CrossRefGoogle Scholar
  7. 7.
    USSR Byull. Izobr. 587839, 1978, no. 1; Herbicidal Composition.Google Scholar
  8. 8.
    Shui-Jin, Y., Qiang, W., and Guo-bin, D., J. Xuzhou Institute Technol. Natural Sci. Ed., 2012, vol. 3, pp. 25–28.Google Scholar
  9. 9.
    Zhang, F., Xu, D., Luo, Sh., Liu, B., and Xu, Z., J. Chem. Ind. Eng., 2004, vol. 55, pp. 2047–2050.Google Scholar
  10. 10.
    Waller, D.L., Stephenson, C.R.J., and Wipf, P., Org. Biomol. Chem., 2007, vol. 5, pp. 58–60.CrossRefGoogle Scholar
  11. 11.
    Vyglazov, O.G., Chuiko, V.A., Izotova, L.V., Vintarskaya, Z.V., and Yudenko, R.Y., Russ. J. Appl. Chem., 2001, vol. 74, no. 11, pp. 1888–1891].CrossRefGoogle Scholar
  12. 12.
    Eshghi, H., Rahimzadeh, M., and Saberi, S., Catal. Commun., 2008, vol. 9, pp. 2460–2466.CrossRefGoogle Scholar
  13. 13.
    Kanai, S., Nagahara, Kita, Y., Kamata, K., and Hara, M., Chem. Sci., 2017, vol. 8, pp. 3146–3153.CrossRefGoogle Scholar
  14. 14.
    Sayama, S., Tetrahedron Lett., 2006, vol. 47, no. 24, pp. 4001–4005.CrossRefGoogle Scholar
  15. 15.
    Yang, Z., Lei, C., Zhao, X., Liu, R., Wei, H., Ma, Y., Meny, S., Cao, Q., Wei, J., Wang, X., Chem. Select., 2017, vol. 2, pp. 9377–9386.Google Scholar
  16. 16.
    Alimardanov, Kh.M., Sadigov, O.A., Abbasov, M.F. Suleymanova, E.T., Jafarova, H.A., Abdullayeva, M.Y., and Abbasova, S.M., Russ. J. Org. Chem., 2011, vol. 47, pp. 1136–1143.CrossRefGoogle Scholar
  17. 17.
    Garibov, N.I., Alimardanov, Kh.M., Dadashova, N.R., Sadiqov, O.A., Almardanova, M.B., Quliyev, A.D., Russ. J. Gen. Chem., 2015, vol. 85, no. 5, pp. 1025–1033.CrossRefGoogle Scholar
  18. 18.
    Abbasov, M.F., Alimardanov, Kh.M., and Suleymanova, E.T., Zh. Prikl. Khim., 1997, vol. 70, no. 4, pp. 648–655.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Kh. M. Alimardanov
    • 1
  • F. M. Velieva
    • 1
    Email author
  • H. R. Dadashova
    • 1
  1. 1.Mamedaliyev Institute of Petrochemical Processes, of the National Academy of Sciences of AzerbaijanBakuAzerbaijan

Personalised recommendations