Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 11, pp 1874–1881 | Cite as

Effect of Process Features and Parameters of Preparation of a Nickel Catalyst by Reduction of Nickel Nitrate with Hexamethylenetetramine on the Catalyst Performance in Synthesis of Nanofibrous Carbon

  • P. B. KurmashovEmail author
  • A. G. Bannov
  • M. V. Popov
  • A. A. Kazakova
  • A. V. Ukhina
  • G. G. Kuvshinov
Catalysis
  • 2 Downloads

Abstract

A promising method based on solution combustion was considered for preparing a catalyst for the synthesis of nanofibrous carbon and hydrogen. The temperature profile of the hexamethylenetetramine combustion front in the bulk of the catalyst precursor is presented on the basis of process imaging. Catalyst samples were tested in a quartz tubular reactor at a temperature of 550°С and a pressure of 1 atm with methane as reaction medium. The influence exerted by the procedure for introducing hexamethylenetetramine into the nitrate base of the catalyst on the performance of the catalyst precursor in synthesis of nanofibrous carbon was studied. The catalyst was obtained as solid foam-like agglomerate (mean size of NiO particles 13.8–35.2 nm).

Keywords

catalyst hexamethylenetetramine synthesis by solution combustion catalytic pyrolysis nanofibrous carbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muradov, N.Z., Int. J. Hydrogen Energy, 1993, vol. 18, pp. 211–215.CrossRefGoogle Scholar
  2. 2.
    Kurmashov, P.B., Bannov, A.G., Dyukova, K.D., Netskina, O.V., Ukhina, A.V., and Kuvshinov, G.G., Khim. Prom–st. Segodnya, 2014, vol. 8, pp. 6–17.Google Scholar
  3. 3.
    Mishakov, I.V., Buyanov, R.A., Chesnokov, V.V., Strel’tsov, I.A., and Vedyagin, A.A., Katal. Prom–sti., 2008, vol. 2, pp. 26–31.Google Scholar
  4. 4.
    Kuvshinov, G.G., Zavarukhin, S.G., Mogil’nykh, Yu.I., and Kuvshinov, D.G., Khim. Prom–st., 1998, vol. 5, pp. 300–307.Google Scholar
  5. 5.
    Kuvshinov, G.G., in Proc. Third Int. Conf. on New Energy Systems and Conversions, Kazan, 1997, pp. 8–13.Google Scholar
  6. 6.
    Rodriguez, N.M., J. Mater. Res., 1993, vol. 8, pp. 3233–3250.CrossRefGoogle Scholar
  7. 7.
    Kuvshinov, G.G., Parmon, V.N., Sadykov, V.A., and Sobyanin, V.A., Stud. Surf. Sci. Catal., 1998, vol. 119, pp. 677–684.CrossRefGoogle Scholar
  8. 8.
    Kuvshinov, G.G., Chukanov, I.S., Krutsky, Y.L., Ochkov, V.V., Zaikovskii, V.I., and Kuvshinov, D.G., Carbon, 2009, vol. 47, pp. 215–225.CrossRefGoogle Scholar
  9. 9.
    Fenelonov, V.B., Avdeeva, L.B., Zheyvot, V.I., Okkel’, L.G., Goncharova, O.V., and Pimneva, L.G., Kinet. Catal., 1993, vol. 34, pp. 483–487.Google Scholar
  10. 10.
    Serp, P., Corrias, M., and Kalck, P., Appl. Catal. A: General, 2003, vol. 253, pp. 337–358.CrossRefGoogle Scholar
  11. 11.
    Rodriguez, N.M., J. Mater. Res., 1993, vol. 8, pp. 3233–3250.CrossRefGoogle Scholar
  12. 12.
    Shinkarev, V.V., Glushenkov, A.M., Kuvshinov, D.G., and Kuvshinov, G.G., Carbon, 2010, vol. 48, pp. 2004–2012.CrossRefGoogle Scholar
  13. 13.
    Asedegbega-Nieto, E., Bachiller-Baeza, B., Kuvshinov, D.G., García-García, F.R., Chukanov, E., Kuvshinov, G.G., Guerrero-Ruiz, A., and Rodríguez-Ramos, I., Carbon, 2008, vol. 46, pp. 1046–1052.CrossRefGoogle Scholar
  14. 14.
    Kovalenko, G.A., Kuznetsova, E.V., Mogilnykh, Yu.I., Andreeva, I.S., Kuvshinov, D.G., and Rudina, N.A., Carbon, 2001, vol. 39, pp. 1033–1043.CrossRefGoogle Scholar
  15. 15.
    Kovalenko, G.A., Perminova, L.V., Rudina, N.A., Mazov, I.N., Moseenkov, S.I., and Kuznetsov, V.L., J. Mol. Catal. B: Enzymatic, 2012, vol. 76, pp. 116–124.CrossRefGoogle Scholar
  16. 16.
    Hammel, E., Tang, X., Trampert, M., Schmitt, T., Mauthner, K., Eder, A., and Potschke, P., Carbon, 2004, vol. 42, pp. 1153–1158.CrossRefGoogle Scholar
  17. 17.
    Bannov, A.G., Uvarov, N.F., Shilovskaya, S.M., and Kuvshinov, G.G., Nanotechnol. Russ., 2012, vol. 7, pp. 169–177.CrossRefGoogle Scholar
  18. 18.
    Pham-Huu, C., Keller, N., Ehret, G., and Ledoux, M.J., J. Catal., 2001, vol. 200, pp. 400–410.CrossRefGoogle Scholar
  19. 19.
    Tomishko, M.M., Demicheva, O.V., Alekseev, A.M., Tomishko, A.G., Klinova, L.L., and Fetisova, O.E., Ross. Khim. Zh., 2008, vol. 5, pp. 39–43.Google Scholar
  20. 20.
    Patent RU 2064889, Publ. 1996.Google Scholar
  21. 21.
    Reshetenko, T.V., Avdeeva, L.B., Ismagilov, Z.R., Chuvilin, A.L., and Ushakov, V.A., Appl. Catal. A: General, 2003, vol. 247, pp. 51–63.CrossRefGoogle Scholar
  22. 22.
    Wang, H.Y. and Lua, A.C., J. Phys. Chem. C, 2012, vol. 116, pp. 26765–26775.CrossRefGoogle Scholar
  23. 23.
    Molchanov, V.V. and Buyanov, R.A., Russ. Chem. Rev., 2000, vol. 69, pp. 435–493.CrossRefGoogle Scholar
  24. 24.
    Chesnokov, V.V. and Chichkan, A.S., Int. J. Hydrogen Energy, 2009, vol. 34, pp. 2979–2985.CrossRefGoogle Scholar
  25. 25.
    Kuvshinov, G.G., Mogilnykh, Yu.I., Kuvshinov, D.G., Ermakov, D.Yu., Ermakova, M.A., Salanov, N.A., and Rudina, N.A., Carbon, 1999, vol. 37, pp. 1239–1246.CrossRefGoogle Scholar
  26. 26.
    Shen, Y. and Lua, A.C., J. Power Sources, 2015, vol. 280, pp. 467–475.CrossRefGoogle Scholar
  27. 27.
    Kumar, A., Wolf, E.E., and Mukasyan, A.S., Am. Inst. Chem. Eng. J., 2011, vol. 57, pp. 2207–2213.CrossRefGoogle Scholar
  28. 28.
    Kingsley, J.J. and Patil, K.C., Mater. Lett., 1988, vol. 6, pp. 427–432.CrossRefGoogle Scholar
  29. 29.
    Pourgolmohammad, B., Masoudpanah, S.M., and Aboutalebi, M.R., Ceram. Int., 2017, vol. 43, pp. 8262–8268.CrossRefGoogle Scholar
  30. 30.
    Prakash, A.S., Khadar, A.M.A., Patil, K.C., and Hegde, M.S., J. Mater. Synth. Process., 2002, vol. 10, pp. 135–141.CrossRefGoogle Scholar
  31. 31.
    Mukasyan, A.S., Epstein, P., and Dinka, P., Proc. Combustion Inst., 2007, vol. 31, pp. 1789–1795.CrossRefGoogle Scholar
  32. 32.
    Dumitrescu, A.M., Samoila, P.M., Nica, V., Doroftei, F., Iordan, A.R., and Palamaru, M.N., Powder Technol., 2013, vol. 243, pp. 9–17.CrossRefGoogle Scholar
  33. 33.
    Kuvshinov, G.G., Mogilnykh, Y.I., Kuvshinov, D.G., Zaikovskii, V.I., and Avdeeva, L.B., Carbon, 1998, vol. 36, pp. 87–97.CrossRefGoogle Scholar
  34. 34.
    Alstrup, I., J. Catal., 1988, vol. 109, pp. 241–251.CrossRefGoogle Scholar
  35. 35.
    Narayanan, G.N., J. Mater. Sci. Mater. Electron., 2016, pp. 12209–12215.Google Scholar
  36. 36.
    Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Chem. Rev., 2016, vol. 116, pp. 14493–14586.CrossRefGoogle Scholar
  37. 37.
    González-Cortés, S.L. and Imbert, F.E., Appl. Catal. A: General, 2013, vol. 452, pp. 117–131.CrossRefGoogle Scholar
  38. 38.
    Wahab, R., Kim, Y.S., Lee, K., and Shin, H.S., J. Mater. Sci., 2010, vol. 11, pp. 2967–2973.CrossRefGoogle Scholar
  39. 39.
    Guillemin, S., Rapenne, L., Roussel, H., Sarigiannidou, E., Bremond, G., and Consonni, V., J. Phys. Chem., 2013, vol. 117, pp. 20738–20745.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. B. Kurmashov
    • 1
    Email author
  • A. G. Bannov
    • 1
  • M. V. Popov
    • 1
  • A. A. Kazakova
    • 1
  • A. V. Ukhina
    • 2
  • G. G. Kuvshinov
    • 3
  1. 1.Novosibirsk State Technical UniversityNovosibirskRussia
  2. 2.Institute of Solid State Chemistry and Mechanochemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Sochi State UniversitySochi, Krasnodar kraiRussia

Personalised recommendations