Russian Journal of Applied Chemistry

, Volume 91, Issue 11, pp 1849–1855 | Cite as

Magnetic Sorbent Based on Magnetite and Modified Carbon Nanotubes for Extraction of Some Toxic Elements

  • S. S. Grazhulene
  • N. I. ZolotarevaEmail author
  • A. N. Red’kin
  • N. N. Shilkina
  • A. A. Mitina
  • A. M. Kolesnikova
Sorption and Ion Exchange Processes


Magnetic sorbent MNP@CNT was synthesized on the basis of magnetic nanoparticles of magnetite (MNPs) and carbon nanotubes (CNTs). The sorbent was studied in extraction of toxic elements from aqueous media and its synthesis conditions were optimized. Isotherms of sorption of the metal ions under study from aqueous solutions were plotted in relation to their concentrations and solution pH values. The optimal conditions for extraction of Pb(II), Cr(III), and Bi(III) at pH 6 and Cd(II) at pH 4.5–5.0 were found. It was shown that the sorption capacity of the MNP@CNT sorbent for the elements under study is comparable with the capacity of carbon nanotubes, being 4.0, 3.8, 3.5, and 3.5 mg g–1 for Bi(III), Pb(II), Ct(III), and Cd(II), respectively. An important advantage of the magnetic composite sorbent over carbon nanotubes is the simple separation of the liquid and solid phases, compared with the conventional column variation of the solid-phase extraction. The resulting composite magnetic sorbent can be used both for analytical purposes, to preliminarily concentrate impurities, and for purification of various technological media and water basins in the environment to remove toxic elements.


sorption magnetic composite magnetic solid-phase extraction carbon nanotubes magnetic nanoparticles toxic metal ions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lucena, R., Simonet, B.M., Cardenas, S., and Valcarcel, M., J. Chromatogr. A, 2011, vol. 1218, no. 4, pp. 620–637.CrossRefGoogle Scholar
  2. 2.
    Aguilar-Arteaga, K., Rodriguez, J.A., and Barrado, E., Anal. Chim. Acta, 2010, vol. 674, no. 1, pp. 157–165.CrossRefGoogle Scholar
  3. 3.
    De Dios, A.S. and Diaz-Garcia, M.E., Anal. Chim. Acta, 2010, vol. 666, no. 1, pp. 1–22.CrossRefGoogle Scholar
  4. 4.
    Gubin, S.P., Koksharov, Yu.A., Khomutov, G.B., and Yurkov, G.Yu., Russ. Chem. Rev., 2005, vol. 74, no. 6, pp. 489–520.CrossRefGoogle Scholar
  5. 5.
    Deng, Y., Deng, C., and Yang, D., Chem. Commun., 2005, pp. 5548–5550.Google Scholar
  6. 6.
    Chen, C., Hu, J., Shao, D., Li, J., and Wang, X., J. Hazard. Mater., 2009, vol. 164, pp. 923–928.CrossRefGoogle Scholar
  7. 7.
    Gong, J.L., Wang, B., Zeng, G.M., Yang, C.P., Niu, C.G., Niu, Q.Y., Zhou, W.J., and Liang, Yi., J. Hazard. Mater., 2009, vol. 164, pp. 1517–1522.CrossRefGoogle Scholar
  8. 8.
    Pardasani, D., Kanaujia, P.K., Purohit, A.K., Shrivastava, A.R., and Dubey, D.K., Talanta, 2011, vol. 86, pp. 248–255.CrossRefGoogle Scholar
  9. 9.
    Luo, M., Liu, D., Zhao, L., Han, J., Liang, Y., Wang, P., and Zhou, Z., Anal. Chim. Acta, 2014, vol. 852, pp. 88–96.CrossRefGoogle Scholar
  10. 10.
    Luo, Y-B., Yu, Q-W., Yuan, B-F., and Feng, Y-Q., Talanta, 2012, vol. 90, pp. 123–131.CrossRefGoogle Scholar
  11. 11.
    Faraji, M., Yamini, Y., and Rezaee, M., J. Iran. Chem. Soc., 2010, vol. 7, pp. 1–37.CrossRefGoogle Scholar
  12. 12.
    Red’kin, A.N., Kipin, V.A., and Malyarevich, L.V., Inorg. Mater., 2006, vol. 42, no. 3, pp. 242–246).CrossRefGoogle Scholar
  13. 13.
    Burmii, Zh.P., Zolotareva, N.I., Khvostikov, V.A., and Grazhulene, S.S., Zavod. Lab., 2008, vol. 74, no. 6, pp. 26–29.Google Scholar
  14. 14.
    Red’kin, A.N. and Kipin, V.A., Neorgan. Mater., 2009, vol. 45, no. 9, pp. 1057–1062Google Scholar
  15. 14a.
    Red’kin A.N. and Kipin, V.A., Inorg. Mater., 2009, vol. 45, no. 9, pp. 982–987.CrossRefGoogle Scholar
  16. 15.
    Grazhulene, S.S., Red’kin, A.N., Telegin, G.F., Bazhenov, A.V., and Fursova, T. N., J. Anal. Chem., 2010, vol. 65, no. 7, pp. 682–689.CrossRefGoogle Scholar
  17. 16.
    Grazhulene, S.S., Red’kin, A.N., and Telegin, G.F., J. Anal. Chem., 2012, vol. 67, no. 5, pp. 423–428.CrossRefGoogle Scholar
  18. 17.
    Kolida, Yu.Ya., Antonova, A.S., Kropacheva, T. N., and Kornev, V.I., Vestn. Udmurt. Univ., 2014, no. 4, pp. 52–61.Google Scholar
  19. 18.
    Grazhulene, S.S., Telegin, G.F., Zolotareva, N.I., Red’kin, A.N., and Mil’nikova, Z.K., Zavod. Lab., Diagn. Mater., 2016, vol. 82, no. 11, pp. 21–26.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. S. Grazhulene
    • 1
  • N. I. Zolotareva
    • 1
    Email author
  • A. N. Red’kin
    • 1
  • N. N. Shilkina
    • 1
  • A. A. Mitina
    • 1
  • A. M. Kolesnikova
    • 2
  1. 1.Institute of Microelectronics Problems and High-Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations