Russian Journal of Applied Chemistry

, Volume 91, Issue 11, pp 1805–1813 | Cite as

Investigation on Electrochemical Micromachining (ECMM) of Copper Inorganic Material Using UV Heated Electrolyte

  • M. SoundarrajanEmail author
  • R. Thanigaivelan
Applied Electrochemistry and Metal Corrosion Protection


The need for micro components/devices in the field of aerospace, automobile and medical is increasing day by day. There are various methods are available for manufacturing of such components/devices. Among the various non-traditional machining techniques, electrochemical micromachining is found to be more suitable due to the reason for its higher material removal rate, good surface quality and accuracy. In this research the microhole machining is performed on the copper inorganic work piece. During the machining, electrolyte has been heated using ultraviolet (UV) rays. L18 orthogonal array (OA) is planned using electrolyte concentration (Ce), machining voltage (Vm), duty cycle (Cd) and electrolyte temperature (Te). The process parameters are optimized using technique for order of preference by similarity to ideal solution (TOPSIS) and grey relational analysis (GRA). Two optimal parametric combinations are obtained, such as 30 g L–1, 7 V, 65% and 34°C using TOPSIS and 30 g L–1, 9 V, 55% and 36°C using GRA. Based on ANOVA the electrolyte concentration shows nearly 65% contributions among the other process parameters. Additionally Scanning electron microscope (SEM) images have been used for the better understanding of roundness of micro-hole.


electrolyte heating ultraviolet TOPSIS grey relational analysis electrochemical machining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vijay Venkatesh, Niharika Swain, Srinivas G, et al., Materials and Manufacturing Processes., 2017, vol. 32, no. 3, pp. 1042–6914.Google Scholar
  2. 2.
    Min S, D-E Lee, A de Grave, et al., Proc. IMechE Part B: J. Engineering Manufacture., 2004, vol. 220, no. 4, pp. 479–487.CrossRefGoogle Scholar
  3. 3.
    Anasane, S.S., Bhattacharyya, B., in Non-Traditional Micromachining Processes. Materials Forming, Kibria, G., Bhattacharyya, B., and Davim, J., Eds., Machining and Tribology, Springer, 2017.Google Scholar
  4. 4.
    Thanigaivelan, R., Arunachalam, R.M., and Pelden Drukp., Int. J. Adv. Manuf. Technol., 2012, vol. 61, nos. 9–12, pp. 1185–1190.CrossRefGoogle Scholar
  5. 5.
    Bhattacharyya, B., Malapati, M., Munda, J., et al., Int. J. Machine Tools & Manufacture, 2007, vol. 47, no. 2, pp. 35–342.CrossRefGoogle Scholar
  6. 6.
    Sekar, T., Arularasu, M., and Sathiyamoorthy, V., Measurement, 2016, vol. 83, pp. 38–43.CrossRefGoogle Scholar
  7. 7.
    Liu, Weidong, Zhang, Hui, Luo, Zhen, et al., J. Mat. Proc. Techn., 2018, vol. 255, pp.784–794.CrossRefGoogle Scholar
  8. 8.
    Alistair Speidel, Jonathon Mitchell-Smith, Darren A., et al., Procedia CIRP., 2016, vol. 42, pp. 367–372.Google Scholar
  9. 9.
    Sankar, M., Gnanavelbabu, A., Rajkumar, K., et al., Mat. & Manuf. Processes, 2017, vol. 32, pp. 687–692.CrossRefGoogle Scholar
  10. 10.
    Zhao-zhi Wu, Xiao-yu Wu, Jian-guo Lei, et al., J. Mat. Proc. Techn., 2018, vol. 255, pp. 275–284.CrossRefGoogle Scholar
  11. 11.
    Liu Guodong, Li Yong, Kong Quancuna, et al., Science Direct Procedia CIRP., 2016, vol. 42, pp. 412–417.CrossRefGoogle Scholar
  12. 12.
    Ayyappan, S. and Sivakumar, K., Int. J. Adv. Manuf. Technol., 2014, vol. 75, nos. 9–12, pp. 479–487.CrossRefGoogle Scholar
  13. 13.
    Yu Hong Long, Liu Qing Yuan, Zhong Zhi Xian, et al., Optik–International J. Light & Electron Optics, 2015, vol. 126, pp. 1826–1829.CrossRefGoogle Scholar
  14. 14.
    Sathiyamoorthy, V. and Sekar., T., Int. J. Enterprise Network Management, 2016, vol. 7, no. 2, pp. 133–141.CrossRefGoogle Scholar
  15. 15.
    Abhishek, Tiwari, Amitava, Mandal, and Kaushik, Kumar, Materials Today Proceedings, 2015, vol. 2, pp. 2337–2345.CrossRefGoogle Scholar
  16. 16.
    Rajarshi, Mukherjee & Shankar, Chakraborty, Int. J. Adv. Manuf. Technol., 2013, vol. 64, nos. 5–8, pp. 781–791.Google Scholar
  17. 17.
    Thanigaivelan, R., Arunachalam, R.M., Mukesh Kumar, et al., Materials & Manufacturing Processes, 2018, vol. 33, no. 4, pp. 1532–2475.CrossRefGoogle Scholar
  18. 18.
    Tosoni, M., Schulz, M., and Hanemann, T., Int. J. Electrochem. Sci., 2014, vol. 9, pp. 3602–3617.Google Scholar
  19. 19.
    Gru, G., Tscherne, F., Spitaler, I., et al., Eur. J. Wood Prod., 2014, vol. 72, pp. 367–376.CrossRefGoogle Scholar
  20. 20.
    Natassia Lona Batista, Maria Cândida Magalhães de Faria, et al., J. Thermoplastic Composite Materials, 2013, vol. 28, no. 3, pp. 340–356.Google Scholar
  21. 21.
    Guerrero-Beltrn, J.A. and Barbosa-Cánovas, G.V. Food Sci. & Techn. Int., 2004, vol. 10, no. 3, pp. 137–147.CrossRefGoogle Scholar
  22. 22.
    Smirnova, T.I., Khizhnyak, S.D., Nikol’skii, V.M., et al., Russ. J. Appl. Chem., 2017, vol. 90, no. 4, pp. 507–551.CrossRefGoogle Scholar
  23. 23.
    Vedenyapina, M.D., Strel’tsova, E.D., Davshan, N.A., et al., Russ. J. Appl. Chem., 2011, vol. 84, no. 2, pp. 204–207.CrossRefGoogle Scholar
  24. 24.
    Soundarrajan, M. and Thanigaivelan, R., Proceedings of 10th International Conference on Precision, Meso, Micro and Nano Engineering (COPEN 10), Dec 07–09, 2017, paper no. 134, Indain Institute of Technology Madars, Chennai-600036, India.Google Scholar
  25. 25.
    Avijeet Satpathy, S., Tripathy, N., Pallavi Senapati, et al., Materials Today: Proceedings, 2017, vol. 4, no. 2, pp. 3043–3052.CrossRefGoogle Scholar
  26. 26.
    Thanigaivelan, R. and Arunachalam, R.M., J. Sci. & Ind. Res., 2013, vol. 72, no. 1, pp. 36–42.Google Scholar
  27. 27.
    Deconinck, D., Van Damme, S., and Deconinck, J., Electrochimica Acta, 2012, vol. 69, pp. 120–127.CrossRefGoogle Scholar
  28. 28.
    Yacine Boulfrad, Jeanette Lindroos, Matthias Wagner, et al., Appl. Phys. Lett., 2014, vol. 105, no. 18, pp. 182108.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringMuthayammal Engineering College (Autonomous)Rasipuram, Namakkal (Dt)India
  2. 2.Department of Mechanical EngineeringMahendra Engineering College (Autonomous)Mallasamudram, Namakkal (Dt)India

Personalised recommendations