Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 11, pp 1785–1798 | Cite as

Sodium–Tin System: Thermodynamic Properties of Alloys and Prospects for Using Tin and Its Alloys and Compounds in Sodium-Ion Batteries (Review)

  • A. G. MorachevskiiEmail author
Applied Electrochemistry and Metal Corrosion Protection
  • 4 Downloads

Abstract

Data on thermodynamic properties of liquid sodium–tin alloys are summarized, analyzed, and compared, and thermodynamic properties of solid phases are estimated. The possibilities of using tin and its alloys and compounds as anode materials for sodium-ion batteries are briefly considered.

Keywords

sodium-ion batteries tin thermodynamic properties of alloys anode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Palomares, V., Serras, P., Villaluenga, I., et al., Energy Environ. Sci., 2012, vol. 5, pp. 5884–5901.CrossRefGoogle Scholar
  2. 2.
    Kim, S.-W., Seo, D.-H., Ma, X., et al., Adv. Energy Mater., 2012, vol. 2, pp. 710–721.CrossRefGoogle Scholar
  3. 3.
    Ellis, B.L. and Nazar, L.F., Curr. Opin. Solid State Mater. Sci., 2012, vol. 16, pp. 168–177.CrossRefGoogle Scholar
  4. 4.
    Slater, M.D., Kim, D., Lee, E., and Johnson, C.S., Adv. Funct. Mater., 2013, vol. 23, pp. 947–958.CrossRefGoogle Scholar
  5. 5.
    Pan, H., Hu, Y.-S., and Chen, L., Energy Environ. Sci., 2013, vol. 6, pp. 2338–2360.CrossRefGoogle Scholar
  6. 6.
    Yabuuchi, N., Kubota, K., Dahbi, M., and Komaba, S., Chem. Rev., 2014, vol. 114, pp. 11636–11682.CrossRefPubMedGoogle Scholar
  7. 7.
    Hasa, I., Buchholz, D., Passerini, S., and Hassoun, J.A., ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 5206–5212.CrossRefPubMedGoogle Scholar
  8. 8.
    Kulova, T.L. and Skundin, A.M., Elektrokhim. Energet., 2016, vol. 16, no. 1, pp. 122–150.Google Scholar
  9. 9.
    Kim Hy, Kim Ha, Ding, Z., et al., Adv. Energy Mater., 2016, vol. 6, paper 1600943, pp. 1–38.Google Scholar
  10. 10.
    Hwang, J.-Y., Myung, S.-T., and Sun, Y.-K., Chem. Soc. Rev., 2017, vol. 46, pp. 3529–3614.CrossRefPubMedGoogle Scholar
  11. 11.
    Adelheim, P., Hartmann, P., Bender, C.L., et al., Beilstein J. Nanotechnol., 2015, vol. 6, pp. 1016–1056.CrossRefGoogle Scholar
  12. 12.
    Morachevskii, A.G., Russ. J. Appl. Chem., 2016, vol. 89, no. 7, pp. 1043–1953.CrossRefGoogle Scholar
  13. 13.
    Morachevskii, A.G. and Demidov, A.I., Termodinamika i elektrokhimiya sistem litii–khal’kogen i natrii–khal’kogen (Thermodynamics and Electrochemistry of Lithium–Chalcogen and Sodium–Chalcogen Systems), St. Petersburg: Politekh. Univ., 2017.Google Scholar
  14. 14.
    Morachevskii, A.G. and Demidov, A.I., Russ. J. Appl. Chem., 2017, vol. 90, no. 5, pp. 661–675.CrossRefGoogle Scholar
  15. 15.
    Pridatko, K.I. and Churikov, A.V., Elektrokhim. Energet., 2005, vol. 5, no. 1, pp. 16–29.Google Scholar
  16. 16.
    Kulova, T.L., Russ. J. Electrochem., 2013, vol. 49, no. 1, pp. 1–25.CrossRefGoogle Scholar
  17. 17.
    Skundin, A.M. and Kulova, T.L., Avtonomn. Energet., 2014, no. 34, pp. 21–28.Google Scholar
  18. 18.
    Schipper, F. and Aurbach, D., Russ. J. Electrochem., 2016, vol. 52, no. 12, pp. 1095–1121.CrossRefGoogle Scholar
  19. 19.
    Morachevskii, A.G., Russ. J. Appl. Chem., 2015, vol. 88, no. 7, pp. 1087–1105.CrossRefGoogle Scholar
  20. 20.
    Morachevskii, A.G. and Demidov, A.I., Termodinamika splavov litiya s elementami podgruppy ugleroda (C, Si, Ge, Sn, Pb) (Thermodynamics of Lithium Alloys with Carbon Subgroup Elements (C, Si, Ge, Sn, Pb)), St. Petersburg: Politekh. Univ., 2016.Google Scholar
  21. 21.
    Morachevskii, A.G., Shesterkin, I.A., Busse-Machukas, V.B., et al., Natrii. Svoistva, proizvodstvo, primenenie (Sodium. Properties, Production, and Use), Morachevskii, A.G., Ed., St. Petersburg: Khimiya, 1992.Google Scholar
  22. 22.
    Sangster, J. and Bale, C.W., J. Phase Equil., 1998, vol. 19, no. 1, pp. 76–81.CrossRefGoogle Scholar
  23. 23.
    Wang, J., Miao, N., Chartrand, P., and Jung, I.-H., J. Chem. Thermodyn., 2013, vol. 66, no. 1, pp. 22–33.CrossRefGoogle Scholar
  24. 24.
    Yamamoto, T., Nohira, T., Hagiwara, R., et al., J. Power Sources, 2013, vol. 237, pp. 98–103.CrossRefGoogle Scholar
  25. 25.
    Morachevskii, A.G. and Lantratov, M.F., Zh. Obshch. Khim., 1959, vol. 29, no. 7, pp. 2109–2113.Google Scholar
  26. 26.
    Rivier, M. and Pelton, A.D., J. Electrochem. Soc., 1978, vol. 125, no. 9, pp. 1377–1382.CrossRefGoogle Scholar
  27. 27.
    Rais, A., Cusack, N.E., and Neale, F.E., J. Phys. F.: Met. Phys., 1982, vol. 12, pp. 1097–1100.CrossRefGoogle Scholar
  28. 28.
    Tamaki, S., Ishiguro, T., and Takeda, S., J. Phys. F.: Met. Phys., 1982, vol. 12, pp. 1613–1624.CrossRefGoogle Scholar
  29. 29.
    Alqasmi, R. and Egan, J.J., Ber. Bunsenges. Phys. Chem., 1983, vol. 87, no. 9, pp. 815–817.CrossRefGoogle Scholar
  30. 30.
    Iwase, M., Sugino, S., Ichise, E., and Waseda, Y., J. Chem. Thermodyn., 1985, vol. 17, pp. 601–609.CrossRefGoogle Scholar
  31. 31.
    Itoh, M. and Kozuka, Z., J. Mater. Sci., 1991, vol. 26, pp. 5221–5228.CrossRefGoogle Scholar
  32. 32.
    Morachevskii, A.G., Voronin, G.F., Geiderikh, V.A., and Kutsenok, I.B., Elektrokhimicheskie metody issledovaniya v termodinamike metallicheskikh sistem (Electrochemical Methods of Investigation in Thermodynamics of Metal Systems), Moscow: Akademkniga, 2003.Google Scholar
  33. 33.
    Morachevskii, A.G. and Sladkov, I.B., Termodinamicheskie raschety v metallurgii. Spravochnik (Thermodynamic Calculations in Metallurgy. Handbook), Moscow: Metallurgiya, 1993.Google Scholar
  34. 34.
    Morachevskii, A.G. and Firsova, E.G., Termodinamika zhidkikh metallov i splavov (Thermodynamics of Liquid Metals and Alloys), St. Petersburg: Lan’, 2016.Google Scholar
  35. 35.
    Morachevskii, A.G., Sladkov, I.B., and Firsova, E.G., Termodinamicheskie raschety v khimii i metallurgii (Thermodynamic Calculations in Chemistry and Metallurgy), St. Petersburg: Lan’, 2018.Google Scholar
  36. 36.
    Morachevskii, A.G. and Firsova, E.G., Russ. Metall. (Metally), 2017, no. 2, pp. 111–115.CrossRefGoogle Scholar
  37. 37.
    Yuan, D. and Kroger, F.A., J. Phys. Chem., 1969, vol. 73, pp. 2390–2392.CrossRefGoogle Scholar
  38. 38.
    Maiorova, E.A. and Morachevskii, A.G., Zh. Prikl. Khim., 1976, vol. 49, no. 11, pp. 2537–2539.Google Scholar
  39. 39.
    Saboungi, M.-L. and Corbin, T.P., J. Phys. F.: Met. Phys., 1984, vol. 14, no. 1, pp. 13–21.CrossRefGoogle Scholar
  40. 40.
    Lim, S.-K. and Muller, F., High Temp.–High Press., 1989, vol. 21, pp. 455–465.Google Scholar
  41. 41.
    Yassin, A. and Castanet, R., J. Alloys Compd., 2001, vol. 314, pp. 160–166.CrossRefGoogle Scholar
  42. 42.
    Ray, A.K. and Young, W.H., Phys. Chem. Liq., 1989, vol. 19, pp. 7–9.CrossRefGoogle Scholar
  43. 43.
    Michael, H.M. and Sahay, B.B., Phys. Status Solidi B, 1993, vol. 179, pp. 295–302.CrossRefGoogle Scholar
  44. 44.
    Akinlade, O., Phys. Chem. Liq., 1995, vol. 29, pp. 9–21.CrossRefGoogle Scholar
  45. 45.
    Moachevskii, A.G. and Maiorova, E.A., Russ. J. Appl. Chem., 1998, vol. 71, no. 8, pp. 1339–1342.Google Scholar
  46. 46.
    Fang, Q. and Wendt, H., J. Appl. Electrochem., 1996, vol. 26, pp. 343–352.CrossRefGoogle Scholar
  47. 47.
    Adhikari, D., Singh, B.P., and Jha, I.S., J. Mol. Liq., 2012, vol. 167, pp. 52–56.CrossRefGoogle Scholar
  48. 48.
    Satpathy, A. and Sengupta, S., Chem. Phys. Lett., 2017, vol. 667, pp. 187–191.CrossRefGoogle Scholar
  49. 49.
    Bale, C.W., Chartrand, P., Degterov, S.A., et al., CALPHAD, 2002, vol. 26, pp. 189–228.CrossRefGoogle Scholar
  50. 50.
    Van der Marel, C., van Oosten, A.V., Geerstma, W., and van der Lugt, W., J. Phys. F.: Met. Phys., 1982, vol. 12, pp. 2349–2361.CrossRefGoogle Scholar
  51. 51.
    Prigogine, I. and Defay, R., Chemical Thermodynamics, London: Longmans, 1954.Google Scholar
  52. 52.
    Morachevskii, A.G., Mokrievich, A.G., and Maiorova, E.A., Zh. Prikl. Khim., 1993, vol. 66, no. 7, pp. 1441–1447.Google Scholar
  53. 53.
    Crouch-Baker, S., Deublein, G., Tsai, H.-C., et al., Solid State Ionics, 1990, vol. 42, pp. 109–115.CrossRefGoogle Scholar
  54. 54.
    Chevier, V.L. and Ceder, G., J. Electrochem. Soc., 2011, vol. 158, pp. A1011–A1014.CrossRefGoogle Scholar
  55. 55.
    Kubota, K. and Komaba, S., J. Electrochem. Soc., 2015, vol. 162, pp. A2538–A2550.CrossRefGoogle Scholar
  56. 56.
    Li, Z., Ding, J., and Mitlin, D., Acc. Chem. Res., 2015, vol. 48, pp. 1657–1665.CrossRefPubMedGoogle Scholar
  57. 57.
    Yamamoto, T., Nohiro, T., Hagiwara, R., et al., J. Power Sources, 2012, vol. 217, pp. 479–484.CrossRefGoogle Scholar
  58. 58.
    Ellis, L.D., Hatchard, T.D., and Obrovac, M.N., J. Electrochem. Soc., 2012, vol. 159, pp. A1801–A1805.CrossRefGoogle Scholar
  59. 59.
    Nam, D.-H., Hong, K.-S., Lim, S.-J., et al., J. Phys. Chem. C, 2014, vol. 118, pp. 20086–20093.CrossRefGoogle Scholar
  60. 60.
    Baggetto, L., Ganesh, P., Meisner, R.P., et al., J. Power Sources, 2013, vol. 234, pp. 48–59.CrossRefGoogle Scholar
  61. 61.
    Kim, C., Lee, K.-Y., Kim, I., et al., J. Power Sources, 2016, vol. 317, pp. 153–158.CrossRefGoogle Scholar
  62. 62.
    Wang, J.W., Liu, X.H., Mao, S.X., and Huang, J.Y., Nano Lett., 2012, vol. 12, pp. 5897–5902.CrossRefPubMedGoogle Scholar
  63. 63.
    Komaba, S., Matsuura, Y., Ishikawa, T., et al., Electrochem. Commun., 2012, vol. 21, pp. 65–68.CrossRefGoogle Scholar
  64. 64.
    Dai, K., Zhao, H., Wang, Z., et al., J. Power Sources, 2014, vol. 263, pp. 276–279.CrossRefGoogle Scholar
  65. 65.
    Datta, M.K., Epur, R., Saha, P., et al. J. Power Sources, 2013, vol. 225, pp. 316–322.CrossRefGoogle Scholar
  66. 66.
    Xu, Y., Zhu, Y., Liu, Y., and Wang, C., Adv. Energy Mater., 2013, vol. 3, pp. 128–133.CrossRefGoogle Scholar
  67. 67.
    Oh, S.-M., Myung, S.-T., Jang, M.-W., et al., Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 3827–3833.CrossRefPubMedGoogle Scholar
  68. 68.
    Bresser, D., Mueller, F., Buchholz, D., et al., Electrochim. Acta, 2014, vol. 128, pp. 163–171.CrossRefGoogle Scholar
  69. 69.
    Liu, Y., Zhang, N., Jiao, L., and Chen, J., Adv. Mater., 2015, vol. 27, pp. 6702–6707.CrossRefPubMedGoogle Scholar
  70. 70.
    Xie, X., Kretschmer, K., Zhang, J., et al., Nano Energy, 2015, vol. 13, pp. 208–217.CrossRefGoogle Scholar
  71. 71.
    Luo, B., Qiu, T., Ye, D., et al., Nano Energy, 2016, vol. 22, pp. 232–240.CrossRefGoogle Scholar
  72. 72.
    Zhu, H., Jia, Z., Chen, Y., et al., Nano Lett., 2013, vol. 13, pp. 3093–3100.CrossRefPubMedGoogle Scholar
  73. 73.
    Wang, J., Eng, C., Chen-Wiegart, Y.K., and Wang, J. Nature Commun., 2015, vol. 6, paper 7496, pp. 1–8.Google Scholar
  74. 74.
    Darwiche, A., Sougrati, M.T., Fraisse, B., et al., Electrochem. Commun., 2013, vol. 32, pp. 18–21.CrossRefGoogle Scholar
  75. 75.
    Baggetto, L., Hah, H.-Y., Jumas, J.-C., et al., J. Power Sources, 2014, vol. 267, pp. 329–336.CrossRefGoogle Scholar
  76. 76.
    Xiao, L., Cao, Y., Xiao, J., et al., Chem. Commun., 2012, vol. 48, pp. 3321–3323.CrossRefGoogle Scholar
  77. 77.
    Li, L., Seng, K.H., Li, D., et al., Nano Res., 2014, vol. 7, pp. 1466–1476.CrossRefGoogle Scholar
  78. 78.
    Ji, L., Gu, M., Shao, Y., et al., Adv. Mater., 2014, vol. 26, pp. 2901–2908.CrossRefPubMedGoogle Scholar
  79. 79.
    Ji, L., Zhou, W., Chabot, V., et al., ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 24895–24901.CrossRefPubMedGoogle Scholar
  80. 80.
    Kim, I.T., Kim, S.-O., and Manthiram, A., J. Power Sources, 2014, vol. 269, pp. 848–854.CrossRefGoogle Scholar
  81. 81.
    Lin, Y.-M., Abel, P.R., Gupta, A., et al., ACS Appl. Mater. Interfaces, 2013, vol. 5, pp. 8273–8277.CrossRefPubMedGoogle Scholar
  82. 82.
    Vogt, L.O. and Villevieille, C., J. Mater. Chem. A, 2017, vol. 5, pp. 3865–3874.CrossRefGoogle Scholar
  83. 83.
    Farbod, B., Cui, K., Kaliswaart, W.P., et al., ACS Nano, 2014, vol. 8, pp. 4415–4429.CrossRefPubMedGoogle Scholar
  84. 84.
    Gu, M., Kushima, A., Shao, Y., et al., Nano Lett., 2013, vol. 13, pp. 5203–5211.CrossRefPubMedGoogle Scholar
  85. 85.
    Su, D., Wang, C., Ahn, H., and Wang, G., Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 12543–12550.CrossRefPubMedGoogle Scholar
  86. 86.
    Park, J., Park, J.-W., Han, J.-H., et al., Mater. Res. Bull., 2014, vol. 58, pp. 186–189.CrossRefGoogle Scholar
  87. 87.
    Gorka, J., Baggetto, L., Keum, J.K., et al., J. Power Sources, 2015, vol. 284, pp. 1–9.CrossRefGoogle Scholar
  88. 88.
    Lu, Y.C., Ma, C., Alvarado, J., et al., J. Power Sources, 2015, vol. 284, pp. 287–295.CrossRefGoogle Scholar
  89. 89.
    Cheng, Y., Huang, J., Li, J., et al., J. Alloys Compd., 2016, vol. 658, pp. 234–240.CrossRefGoogle Scholar
  90. 90.
    Bian, H., Zhang, J., Yuen, M.-F., et al., J. Power Sources, 2016, vol. 307, pp. 634–640.CrossRefGoogle Scholar
  91. 91.
    Shimizu, M., Usui, H., and Sakaguchi, H., J. Power Sources, 2014, vol. 248, pp. 378–382.CrossRefGoogle Scholar
  92. 92.
    Su, D., Xie, X., and Wang, G., Chem. Eur. J, 2014, vol. 20, pp. 3192–3197.CrossRefPubMedGoogle Scholar
  93. 93.
    Su, D., Ahn, H.J., and Wang, G., Chem. Commun., 2013, vol. 49, pp. 3131–3133.CrossRefGoogle Scholar
  94. 94.
    Wang, Y., Su, D., Wang, C., and Wang, G., Electrochem. Commun., 2013, vol. 29, pp. 8–11.CrossRefGoogle Scholar
  95. 95.
    Wang, Y.-X., Lim, Y.-C., Park, M.-S., et al., J. Mater. Chem. A, 2014, vol. 2, pp. 529–534.CrossRefGoogle Scholar
  96. 96.
    Ding, J., Li, Z., Wang, H.L., et al., J. Mater. Chem. A, 2015, vol. 3, pp. 7100–7111.CrossRefGoogle Scholar
  97. 97.
    Kalubarme, R.S., Lee, J.-Y., and Park, C.-J., ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 17226–17237.CrossRefPubMedGoogle Scholar
  98. 98.
    Dirican, M., Lu, Y., Ge, Y., et al., ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 18387–18396.CrossRefPubMedGoogle Scholar
  99. 99.
    Li, Z., Ding, J., Wang, H., et al., Nano Energy, 2015, vol. 15, pp. 369–378.CrossRefGoogle Scholar
  100. 100.
    Zhang, Y., Xie, J., Zhang, S., et al., Electrochim. Acta, 2015, vol. 151, pp. 8–15.CrossRefGoogle Scholar
  101. 101.
    Xie, X., Su, D., Zhang, J., et al., Nanoscale, 2015, vol. 7, pp. 3164–3172.CrossRefPubMedGoogle Scholar
  102. 102.
    Xie, X., Chen, S., Sun, B., et al., ChemSusChem, 2015, vol. 8, pp. 2948–2955.CrossRefPubMedGoogle Scholar
  103. 103.
    Liu, Y., Fang, X., Ge, M., et al., Nano Energy, 2015, vol. 16, pp. 399–407.CrossRefGoogle Scholar
  104. 104.
    Wu, L., Hu, X., Qian, J., et al., J. Mater. Chem. A, 2013, vol. 1, pp. 7181–7184.CrossRefGoogle Scholar
  105. 105.
    Wu, L., Lu, H., Xiao, L., et al., J. Mater. Chem. A, 2014, vol. 2, pp. 16424–16428.CrossRefGoogle Scholar
  106. 106.
    Wu, L., Lu, H., Xiao, L., et al., J. Power Sources, 2015, vol. 293, pp. 784–789.CrossRefGoogle Scholar
  107. 107.
    Xie, X., Su, D., Chen, S., et al., Chem. Asian J., 2014, vol. 9, pp. 1611–1617.CrossRefPubMedGoogle Scholar
  108. 108.
    Lu, Y.C., Ma, C., Alvarado, J., et al., J. Mater. Chem. A, 2015, vol. 3, pp. 16971–16977.CrossRefGoogle Scholar
  109. 109.
    Zhu, C., Kopold, P., Li, W., et al., Adv. Sci., 2015, vol. 2, paper 1500200.Google Scholar
  110. 110.
    Zhou, T., Pang, W.K., Zhang, C., et al., ACS Nano, 2014, vol. 8, pp. 8323–8333.CrossRefPubMedGoogle Scholar
  111. 111.
    Dutta, P.K., Sen, U.K., and Mitra, S., RSC Adv., 2014, vol. 4, pp. 43155–43159.CrossRefGoogle Scholar
  112. 112.
    Liu, Y., Kang, H., Jiao, L., et al., Nanoscale, 2015, vol. 7, pp. 1325–1332.CrossRefPubMedGoogle Scholar
  113. 113.
    Zhang, Y., Zhu, P., Huang, L., et al., Adv. Funct. Mater., 2015, vol. 25, pp. 481–489.CrossRefGoogle Scholar
  114. 114.
    Wang, J., Luo, C., Mao, J., et al., ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 11476–11481.CrossRefPubMedGoogle Scholar
  115. 115.
    Qu, B., Ma, C., Ji, G., et al., Adv. Mater., 2014, vol. 26, pp. 3854–3859.CrossRefPubMedGoogle Scholar
  116. 116.
    Li, W., Chou, S.-L., Wang, J.-Z., et al., Adv. Mater., 2014, vol. 26, pp. 4037–4042.CrossRefPubMedGoogle Scholar
  117. 117.
    Kim, Y., Kim, Y., Choi, A., et al., Adv. Mater., 2014, vol. 26, no. 24, pp. 4139–4144.CrossRefPubMedGoogle Scholar
  118. 118.
    Qian, J., Xiong, Y., Cao, Y., et al., Nano Lett., 2014, vol. 14, pp. 1865–1869.CrossRefPubMedGoogle Scholar
  119. 119.
    Fan, X., Mao, J., Zhu, Y., et al., Adv. Energy Mater., 2015, vol. 5, paper 1500174.Google Scholar
  120. 120.
    Liu, J., Kopold, P., and Wu, C., Energy Environ. Sci., 2015, vol. 8, pp. 3531–3538.CrossRefGoogle Scholar
  121. 121.
    Martine, M.L., Parzych, G., Thoss, F., et al., Solid State Ionics, 2014, vol. 268, pp. 261–264.CrossRefGoogle Scholar
  122. 122.
    Eisenmann, B. and Klein, J., Z. Naturforsch. B, 1988, vol. 43, pp. 69–71.CrossRefGoogle Scholar
  123. 123.
    Eisenmann, B. and Klein, J., Z. Naturforsch. B, 1988, vol. 43, pp. 1156–1160.CrossRefGoogle Scholar
  124. 124.
    Dreval, L., Zschor, M., Munchgesang, W., et al., J. Alloys Compd., 2017, vol. 695, pp. 1725–1742.CrossRefGoogle Scholar
  125. 125.
    Ong, S.P., Chevrier, V.L., Hautier, G., et al., Energy Environ. Sci., 2011, vol. 4, pp. 3680–3688.CrossRefGoogle Scholar
  126. 126.
    Chevrier, V.L. and Ceder, G., J. Electrochem. Soc., 2011, vol. 158, pp. A1011–A1014.CrossRefGoogle Scholar
  127. 127.
    Hong, S.Y., Kim, Y., Park, Y., et al., Energy Environ. Sci., 2013, vol. 6, pp. 2067–2081.CrossRefGoogle Scholar
  128. 128.
    Palomarec, V., Casas-Cabanas, M., Castillo-Martinez, E., et al., Energy Environ. Sci., 2013, vol. 6, pp. 2312–2337.CrossRefGoogle Scholar
  129. 129.
    Lee, D.-J., Park, J.-W., Hasa, I., et al., J. Mater. Chem. A, 2013, vol. 1, pp. 5256–5261.CrossRefGoogle Scholar
  130. 130.
    Jiang, Y., Hu, M., Zhang, D., et al., Nano Energy, 2014, vol. 5, pp. 60–66.CrossRefGoogle Scholar
  131. 131.
    Bommier, C. and Ji, X., Israel J. Chem., 2015, vol. 55, pp. 486–507.CrossRefGoogle Scholar
  132. 132.
    Kundu, D., Talaie, E., Duffort, V., and Nazar, L.F., Angew. Chem. Int. Ed., 2015, vol. 54, pp. 3431–3448.CrossRefGoogle Scholar
  133. 133.
    Yang, S. and Dong, W., Chin. J. Nonferrous Met., 2016, vol. 26, pp. 1051–1064.Google Scholar
  134. 134.
    Zhou, X.-F. and Zhao, F.-S., Battery Bimonthly, 2016, vol. 46, no. 3, pp. 172–175.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Peter the Great Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations