Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 10, pp 1711–1720 | Cite as

Synthesis and Characterization of AlPO4/ZSM-5 Catalyst for Methanol Conversion to Dimethyl Ether

  • Ehsan KianfarEmail author
Catalysis
  • 8 Downloads

Abstract

A catalyst based on zeolite was synthesized using the hydrothermal method, and alumina phosphate was embedded in its structure. The correspondent reactor tests were carried out to assess the synthesized catalyst where methanol with a purity of 99.9% was used. The results indicated that alumina phosphate is considerably effective on catalyst functionality. Given the results, the best performance was obtained when the ratio of alumina phosphate to alumina is 0.7 weighted in catalyst and fixed-bed reactor serves in a temperature of 300°C and WHSV of 0.8 h‒1. Structure and morphology of synthesized catalyst were characterized by BET, XRF, SEM, and XRD. The catalyst was evaluated in the process of converting methanol to dimethyl ether in a fixed-bed reactor under operating conditions of 300°C, 1 atm and 0.5 mL min‒1 of feed (pure methanol). The results of test indicated by increasing the amount of alumina phosphate to alumina, the conversion rate of methanol was increased to a constant value and does not change in ratios higher than 0.7. Moreover, the methanol conversion rate will reach temperature 300°C at 84%.

Keywords

Methanol to dimethyl ether process metal improvers fixed-bed reactor ZSM-5 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Noyen, J., De Wilde, A., Schroeven, M., Mullens, S., and Luyten, J., Int. J. Appl. Ceramic Tech., 2012, vol. 9, no. 5, pp. 902–910.CrossRefGoogle Scholar
  2. 2.
    Narula, C.K., Daw, C.S., Hoard, J.W., and Hammer., T., Int. J. Appl. Ceramic Tech., 2005, vol. 2, no. 6, pp. 452–466.CrossRefGoogle Scholar
  3. 3.
    Yilmaz, B., Topics in Catalysis, 2009, vol. 52, no. 6, pp. 888–895.CrossRefGoogle Scholar
  4. 4.
    Garcla, J., Li, K., and Davis, M.E., Mesoporous Zeolites: Preparation, Characterization and Applications, Wiley, 2015.Google Scholar
  5. 5.
    Rownaghi, A.A. and Hedlund, J., Ind. & Eng. Chem. Res., 2011, vol. 50, no. 21, pp. 11872–11878.CrossRefGoogle Scholar
  6. 6.
    Bjorgen, M., Joensen, F., Holm, M.S., Olsbye, U., Lillerud, and Svelle, S., Appl. Catal. A-Gen., 2008, vol. 345, no. 1, pp. 43–50.CrossRefGoogle Scholar
  7. 7.
    Zaidi, H.A. and Pant, K.K., Korean J. Chem. Eng., 2005, vol. 22, no. 3, pp. 353–357.CrossRefGoogle Scholar
  8. 8.
    Conte, M., Lopez-Sanchez, J.A., He, Q., Morgan, D.J., Ryabenkova, Y., Bartley, J.K., et al., Catal. Sci. Technol., 2012, vol. 2, no. 1, pp. 105–112.CrossRefGoogle Scholar
  9. 9.
    Hajimirzaee, S., Ainte, M., Soltani, B., Behbahani, R.M., Leeke, G.A., and Wood, J., Chem. Eng. Res. & Design, 2015, vol., no. 93, pp. 541–553.CrossRefGoogle Scholar
  10. 10.
    Yaripour, F., Mollavali, M., Jam, S.M., and Atashi, H., Energy & Fuels, 2009, vol. 23, no. 4, pp. 1896–1900.CrossRefGoogle Scholar
  11. 11.
    Zaidi, H.A. and Pant, K.K., Canadian J. Chem. Eng., 2005, vol. 83, no. 6, pp. 970–977.CrossRefGoogle Scholar
  12. 12.
    Kianfar, E., Salimi, M., Pirouzfar, V., and Koohestani, B., Int. J. Appl. Ceram. Technol., 2018, vol. 15, no. 3, pp. 734–741.CrossRefGoogle Scholar
  13. 13.
    Treacy, M.M. and Higgins, J.B., Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed., Elsevier, vol. 2007.Google Scholar
  14. 14.
    Koekkoek, A.J.J., Kim, W., Degirmenci, V., Xin, H., Ryoo, R., Hensen, E.J.M., J. Catalysis, 2013, vol. 299, pp. 81–90.CrossRefGoogle Scholar
  15. 15.
    Isernia, L.F., Mat. Res., 2013, no. 16, pp. 792–802.CrossRefGoogle Scholar
  16. 16.
    Shukla, D.B. and Pandya, V.P., J. Chem. Tech. & Biotechn., 1989, vol. 44, no. 2, pp. 147–154.CrossRefGoogle Scholar
  17. 17.
    Cañizares, P., de Lucas, A., Dorado, F., Durán, A., and Asencio, I., Appl. Catalysis A: General, 1998, vol. 169, no. 1, pp. 137–150.CrossRefGoogle Scholar
  18. 18.
    Van Donk, S., Janssen, A.H., Bitter, J.H., and de Jong K.P., Catalysis Reviews, 2003, vol. 45, no. 2, pp. 297–319.CrossRefGoogle Scholar
  19. 19.
    Ni, Y., Sun, A., Wu, X., Hai, G., Hu, J., Li, T., et al., Micropor. & Mesopor. Mat., 2011, vol. 143, no. 2, pp. 435–442.CrossRefGoogle Scholar
  20. 20.
    Wu, W. and Weitz, E., Appl. Sur, Sci., 2014, vol. 316, pp. 405–415.CrossRefGoogle Scholar
  21. 21.
    Cruz-Cabeza, A.J., Esquivel, D., Jiménez-Sanchidrián, C., and Romero-Salguero, F.J., Materials, 2012, vol. 5, no. 1, pp. 121–134CrossRefGoogle Scholar
  22. 22.
    Biscardi, J.A., Meitzner, G.D., and Iglesia, E., J. Catalysis, 1998, vol. 179, no. 1, pp. 192–202.CrossRefGoogle Scholar
  23. 23.
    Kianfar, E., Salimi, M., Pirouzfar, V., and Koohestani, B., Synthesis and Modification of Zeolite ZSM-5 Catalyst with Solutions of Calcium Carbonate (CaCO3) and Sodium Carbonate (Na2CO3) for Methanol to Gasoline Conversion, 2018, https://doi.org/10.1515/ijcre-2017-0229. CrossRefGoogle Scholar
  24. 24.
    Bjørgen, M., Svelle, S., Joensen, F., Nerlov, J., Kolboe, S., Bonino, F., Palumbo, L., Bordiga, S., and Olsbye, U., J. Catal., 2007, vol. 249, pp. 195–207.CrossRefGoogle Scholar
  25. 25.
    Shareh, F.B., Kazemeini, M., Asadi, M., and Fattahi, M., Pet. Sci. Technol., 2014, vol. 32, pp. 1349–1356.CrossRefGoogle Scholar
  26. 26.
    Wan, Z., Wu, W., Chen, W., Yang, H., and Zhang, D., Ind. Eng. Chem. Res., 2014, vol. 53, no. 50, pp. 19471–19478.CrossRefGoogle Scholar
  27. 27.
    Dagle, R.A., Lizarazo-Adarme, J.A., Lebarbier Dagle, V., Gray, M.J., White, J.F., King, D.L., and Palo, D.R., Fuel Process. Technol., 2014, vol. 123, pp. 65–74.CrossRefGoogle Scholar
  28. 28.
    Bjørgen, M., Joensen, F., Lillerud, K.P., Olsbye, U., and Svelle, S., Catal. Today, 2009, vol. 142, pp. 90–97.CrossRefGoogle Scholar
  29. 29.
    Wu, L., Degirmenci, V., Magusin, P.C.M.M., Lousberg, N.J.H.G.M., and Hensen, E.J.M., J. Catal., 2013, vol. 298, pp. 27–40.CrossRefGoogle Scholar
  30. 30.
    Lee, J.H., Park, M.B., Lee, J.K., Min, H.-K., Song, M.K., and Hong, S.B., J. Am. Chem. Soc., 2010, vol. 132, pp. 12971–12982.CrossRefGoogle Scholar
  31. 31.
    Di Zuo xing, Cheng, Y., Jiao, X., Li, J., Wu, J., and Zhang, D., Fuel, 2013, vol. 104, pp. 878–881.CrossRefGoogle Scholar
  32. 32.
    Hosseini, S., Taghizadeh, M., and Eliassi, A., J. Natural Gas Chem., 2012, vol. 21, pp. 344–351.CrossRefGoogle Scholar
  33. 33.
    Hassanpour, S., Yaripour, F., and Taghizadeh, M., Fuel Proc. Tech., 2010, vol. 91, pp. 1212–1221.CrossRefGoogle Scholar
  34. 34.
    Sabour, B., Peyrovi, M.H., Hamoule, T., and Rashidzadeh, M., J. Ind. & Eng. Chem., 2014, vol. 20, pp. 222–227.CrossRefGoogle Scholar
  35. 35.
    Rownaghi, A.A., Rezaei, F., Stante, M., and Hedlund, J., Appl. Catal., B: Env., 2012, vols. 119–120, pp. 56–61.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Arak BranchIslamic Azad UniversityArakIran
  2. 2.Young Researchers and Elite Club, Gachsaran BranchIslamic Azad UniversityGachsaranIran

Personalised recommendations