Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 10, pp 1660–1664 | Cite as

Synthesis of BaSnO3/SnO2 Nanocomposites as Heterogeneous Additive for Composite Solid Electrolytes

  • A. V. LoginovEmail author
  • Yu. G. Mateyshina
  • A. I. Aparnev
  • N. F. Uvarov
Inorganic Synthesis and Industrial Inorganic Chemistry
  • 7 Downloads

Abstract

Method of differential thermal analysis was used to study the thermolysis of a mixture of barium oxalate hydrate and α-SnO2·H2O, produced by precipitation from hydrochloric solutions. The methods of X-ray diffraction analysis, electron microscopy, and low-temperature nitrogen adsorption were used to examine the reaction products formed at various heating temperatures and determine their phase composition. The nanocomposite BaSnO3/SnO2 is the final product of thermolysis and subsequent heating to 950°C. The nanocomposite was used as a heterogeneous oxide additive for obtaining a CsNO2–BaSnO3/SnO2 composite solid electrolyte. The conductivity of the composite exceeds that of the starting salt by more than order of magnitude.

Keywords

nanocomposites tin dioxide hydroxo stannates composite solid electrolytes stannates of alkaline-earth metals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zheng, J., Ma, D., Wu, X., Dou, P., Cao, Z., Wang, C., and Xu, X., J. Mater. Sci., 2017, vol. 52, no. 6, pp. 3016–3027.CrossRefGoogle Scholar
  2. 2.
    Aparnev, A.I., Afonina, L.I., Loginov, A.V., and Uvarov, N.F., Russ. J. Appl. Chem., 2016, vol. 89, no. 2, pp. 212–215.CrossRefGoogle Scholar
  3. 3.
    Coffeen, W.W., J. Am. Ceram. Soc., 1953, vol. 36, no. 7, pp. 207–214.CrossRefGoogle Scholar
  4. 4.
    Jena, H., Govindan Kutty, K.V., and Kutty, T.R.N., Mater. Chem. Phys., 2004, vol. 88, no. 1, pp. 167–179.CrossRefGoogle Scholar
  5. 5.
    Lu, Z., Liu, J., Tang, Y., and Li, Y., Inorg. Chem. Com mun., 2004, vol. 7, no. 6, pp. 731–733.CrossRefGoogle Scholar
  6. 6.
    Rashad, M.M. and El-Shall, H., Powder Technol., 2008, vol. 183, pp. 161–168.CrossRefGoogle Scholar
  7. 7.
    Huang, F., Yuan, Z., Zhan, H., Zhou, Y., and Sun, J., Mater. Chem. Phys., 2004, vol. 83, no. 1, pp. 16–22.CrossRefGoogle Scholar
  8. 8.
    Qin, Y., Xiong, J., Zhang, W., Liu, L., and Cui, Y., J. Mater. Sci., 2015, vol. 50, no. 17, pp. 5865–5872.CrossRefGoogle Scholar
  9. 9.
    Mateyshina, Yu.G., Iskakova, A.A., Ulihin, A.S., and Uvarov, N.F., Russ. J. Electrochem., 2015, vol. 51, no. 7, pp. 615–618.CrossRefGoogle Scholar
  10. 10.
    Mateyshina, Yu. and Uvarov, N., Solid State Ionics, 2017, vol. 302, pp. 77–82.CrossRefGoogle Scholar
  11. 11.
    Uvarov, N.F., Kompozitsionnye tverdye elektrolity (Composite Solid Electrolytes), Novosibirsk: Izd. Sib. Otd. Ross. Akad. Nauk, 2008.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Loginov
    • 1
    • 2
    Email author
  • Yu. G. Mateyshina
    • 1
    • 2
  • A. I. Aparnev
    • 1
  • N. F. Uvarov
    • 1
    • 2
  1. 1.Novosibirsk State Technical UniversityNovosibirskRussia
  2. 2.Institute of Solid State Chemistry and MechanochemistryNovosibirskRussia

Personalised recommendations