Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 10, pp 1654–1659 | Cite as

Highly Hydrophobic Conducting Nanocomposites Based on a Fluoropolymer with Carbon Nanotubes

  • L. V. Solov’yanchik
  • S. V. Kondrashov
  • V. S. Nagornaya
  • I. A. Volkov
  • T. P. D’yachkova
  • K. M. Borisov
Macromolecular Compounds and Polymeric Materials
  • 9 Downloads

Abstract

A procedure was suggested for preparing highly hydrophobic conducting coatings based on fluoropolymers with carbon nanotubes of two types: Taunit-MD and carbon nanotubes functionalized with alkyl groups. The surface resistance, contact angle, sliding angle, and surface roughness were measured; structural features of the nanocomposites were studied. The properties of the coatings obtained depend on the concentration and type of the carbon nanotubes used. Introduction of functionalized carbon nanotubes into a fluoropolymer matrix allows preparation of coatings with higher values of the sliding angle and electrical resistance. The contact angle and sliding angle depend on the surface roughness and structure in different fashions.

Keywords

carbon nanotubes nanocomposites electrical conductivity hydrophobicity surface roughness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kablov, E.N., Aviats. Mater. Tekhnol., 2015, no. 1 (34), pp. 3–33.Google Scholar
  2. 2.
    Kablov, E.N., Vopr. Materialoved., 2006, no. 1, pp. 64–67.Google Scholar
  3. 3.
    Selyaev, V.P., Nizina, T.A., Lankina, Yu.A., Tsyganov, V.V., and Maslov, I.M., in Materialy IV Respublikanskoi nauchno-prakticheskoi konferentsii “Nauka i innovatsii v Respublike Mordoviya” (Proc. IV Republican Scientific and Practical Conf. “Science and Innovations in the Republic of Mordovia”), 2005, pp. 555–559.Google Scholar
  4. 4.
    Moiseeva, N.A., Bogateev, D.G., Bogateev, G.G., Abdullin, I.A., and Balandina, A.A., Vestn. Kazansk. Tekhnol. Univ., 2012, vol. 15, no. 24, pp. 95–96.Google Scholar
  5. 5.
    Zubairov, T.A. and Mastobaev, B.N., in Materialy 64-i nauchno-tekhnicheskoi konferentsii studentov, aspirantov i molodykh uchenykh UGNTU (Proc. 64th Scientific and Technical Conf. of Students, Postgraduate Students, and Young Scientists of the Ufa State Petroleum Technical Univ.), 2013, pp. 25–26.Google Scholar
  6. 6.
    Buznik, V.M., Aviats. Mater. Tekhnol., 2013, no. 1, pp. 29–34.Google Scholar
  7. 7.
    Paints, Coatings and Solvents, Stoye, D. and Freitag, W., Eds., Wiley, 2007, 2nd ed. Translated under the title Kraski, pokrytiya i rastvoriteli, Itsko, E.F., Ed., St. Petersburg: Professiya, 2012, pp. 49–51.Google Scholar
  8. 8.
    Boinovich, L.B. and Emelyanenko, A.M., Russ. Chem. Rev., 2008, vol. 77, no. 7, pp. 583–600.CrossRefGoogle Scholar
  9. 9.
    Shashkeev, K.A., Nagornaya, V.S., Volkov, I.A., Kondrashov, S.V., D’yachkova, T.P., Kondakov, A.I., Borisov, K.M., and Yurkov, G.Yu., Russ. J. Appl. Chem., 2017, vol. 90, no. 7, pp. 1107–1116.CrossRefGoogle Scholar
  10. 10.
    Solov’yanchik, L.V., Shashkeev, K.A., and Soldatov, M.A., Materialovedenie, 2017, vol. 24, no. 4, pp. 184–194.Google Scholar
  11. 11.
    Lau, K.K.S., Bico, J., Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., McKinley, G.H., and Gleason, K.K., Nano Lett., 2003, vol. 3, pp. 1701–1705.CrossRefGoogle Scholar
  12. 12.
    Han, J.T., Kim, S.Y., Woo, J.S., and Lee, G., Adv. Mater., 2008, vol. 20, pp. 3724–3727.CrossRefGoogle Scholar
  13. 13.
    Wang, K., Hu, N.-X., Xu, G., and Qi, Y., Carbon, 2011, vol. 49, pp. 1769–1774.CrossRefGoogle Scholar
  14. 14.
    Kablov, E.N., Solovyanchik, L.V., Kondrashov, S.V., Buznik, V.M., Yurkov, G.Y., Kushch, P.P., Kichigina, G.A., Kiryukhin, D.P., and Dyachkova, T.P., Nanotechnol. Russ., 2016, vol. 11, nos. 11–12, pp. 782–790.CrossRefGoogle Scholar
  15. 15.
    Špitalsky, Z., Krontiras, C.A., Georga, S.N., and Galiotis, C., Composites: Part A, 2009, vol. 40, pp. 778–783.CrossRefGoogle Scholar
  16. 16.
    Lau, C.H., Cervini, R., Clarke, S.R., Markovic, M.G., Matisons, J.G., Hawkins, S.C., Huynh, P.C., and Simon, G.P., J. Nanopart. Res., 2008, vol. 10, pp. 77–88.CrossRefGoogle Scholar
  17. 17.
    Patent RU 2529217, Publ. 2014.Google Scholar
  18. 18.
    Gorskii, S.Yu., D’yachkova, T.P., and Burakova, E.A., Nauch.-Tekh. Vedom. Sankt-Peterb. Politekh. Univ. Estestv. Inzh. Nauki, 2014, no. 1, pp. 108–112.Google Scholar
  19. 19.
    Larionov, S.A., Deev, I.S., Petrova, G.N., and Beider, E.Ya., Tr. Vseross. Nauch.-Issled. Inst. Aviats. Mater.: Elektron. Nauch.-Tekh. Zh., 2013, no. 9, paper 04. URL: http://www.viam-works.ru (addressed April 27, 2018).
  20. 20.
    Kondrashov, S.V., Shashkeev, K.A., and Popkov, O.V., Tr. Vseross. Nauch.-Issled. Inst. Aviats. Mater.: Elektron. Nauch.-Tekh. Zh., 2016, no. 3, paper 07. URL: http://www.viam-works.ru (addressed April 27, 2018).
  21. 21.
    Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Kinloch, I.A., Bauhofer, W., and Windle, A.H., Polymer, 2006, vol. 47, pp. 2036–2045.CrossRefGoogle Scholar
  22. 22.
    Bekyarova, E., Itkis, M.E., Cabrera, N., Zhao, B., Yu, A., Gao, J., and Haddon, R.C., J. Am. Chem. Soc., 2005, vol. 127, pp. 5990–5995.CrossRefGoogle Scholar
  23. 23.
    Kablov, E.N., Kondrashov, S.V., and Yurkov, G.Y., Nanotechnol. Russ., 2013, vol. 8, nos. 3–4, pp. 163–185.CrossRefGoogle Scholar
  24. 24.
    Baskin, Z.L., Shabalin, D.A., Vyrazheikin, E.S., and Dedov, S.A., Zh. Ross. Khim. O–va. im. D.I. Mendeleeva, 2008, vol. LII, no. 3, pp. 13–23.Google Scholar
  25. 25.
    Kuchis, E.V., Metody issledovaniya effekta Kholla (Methods for Studying the Hall Effect), Moscow: Sov. Radio, 1974.Google Scholar
  26. 26.
    Kreder, M.J., Alvarenga, J., Kim, Ph., and Aizenberg, J., Nature Rev., 2016, vol. 1, p. 15003.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. V. Solov’yanchik
    • 1
  • S. V. Kondrashov
    • 1
  • V. S. Nagornaya
    • 1
  • I. A. Volkov
    • 1
  • T. P. D’yachkova
    • 2
  • K. M. Borisov
    • 3
  1. 1.All-Russia Research Institute of Aviation MaterialsMoscowRussia
  2. 2.Tambov State Technical UniversityTambovRussia
  3. 3.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations