Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 10, pp 1642–1653 | Cite as

Stability of Polymer–Monomer Particles of Synthetic Latexes

  • I. I. KraynikEmail author
  • V. N. Beresnev
  • L. V. Agibalova
  • A. V. Kurova
Macromolecular Compounds and Polymeric Materials
  • 5 Downloads

Abstract

The presence of “living” macroradicals in the volume of a polymer–monomer particle may be one of the factors responsible for the loss of the aggregative stability of latexes. If the adsorption protection of a polymer–monomer particle is insufficient, high content of “living” macroradicals leads to gelation in the latex in the course of storage. Correlation between the latex life time, hydration of nonionic surfactant molecules in the adsorption layer of a polymer–monomer particle, and extent of the action of the macroradicals was determined. Naphthalenesulfonic dispersing agents enhance the stability of latex systems in the step of polymerization and distillation of the monomers owing to a decrease in the critical micelle concentration of the emulsifier, to extension of the micellar period of the polymerization, to an increase in the degree of saturation of polymer–monomer particles, and to an increase in the probability of macroradical recombination in the volume of a polymer–monomer particle. With an increase in the degree of polycondensation of naphthalene-containing dispersing agents, their surface activity increases, whereas the ability to support the aggregative stability of latexes decreases.

Keywords

nonionic surfactants free macroradicals gel effect aggregative stability of latexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gusev, Yu.K. and Papkov, V.N., Kauchuk Rezina, 2009, no. 2, pp. 2–9.Google Scholar
  2. 2.
    Poluektov, P.T. and Vlasova, L.A., Prom. Proizv. Ispol’z. Elastom., 2011, no. 4, pp. 31–36.Google Scholar
  3. 3.
    Poluektov, P.T., Vlasova, L.A., and Shutilin, Yu.F., Ekol. Prom–st. Ross., 2006, no. 12, pp. 19–24.Google Scholar
  4. 4.
    Poluektov, P.T., Vlasova, L.A., and Yurkina, L.L., Ekol. Prom–st. Ross., 2008, no. 1, pp. 24–28.Google Scholar
  5. 5.
    Beresnev, V.N., Kraynik, I.I., Baranets, I.V., and Agibalova, L.V., Russ. J. Appl. Chem., 2018, vol. 91, no. 7, pp. 1137–1145.CrossRefGoogle Scholar
  6. 6.
    Gao, J. and Penlidis, A., Prog. Polym. Sci., 2002, vol. 27, no. 3, pp. 403–535.CrossRefGoogle Scholar
  7. 7.
    Thickett, S. and Gilbert, R., Macromolecules, 2006, vol. 39, no. 6, pp. 2081–2091.CrossRefGoogle Scholar
  8. 8.
    Chekal, B.P., Understanding the Roles of Chemicallycontrolled and Diffusion-limited Processes in Determining the Severity of Autoacceleration Behavior in Free Radical Polymerization, Northwestern Univ., 2002.Google Scholar
  9. 9.
    Yanlin, S. and Yanping, H., Iran. Polym. J., 2015, vol. 24, no. 11, pp. 935–944.CrossRefGoogle Scholar
  10. 10.
    Tauer, K. and Hernandez, H., Colloid Polym. Sci., 2008, vol. 286, no. 5, pp. 499–515.CrossRefGoogle Scholar
  11. 11.
    Shapiro, Yu.E., Russ. Chem. Rev., 1988, vol. 57, no. 8, pp. 717–719.CrossRefGoogle Scholar
  12. 12.
    Ingold, C.K., Structure and Mechanism in Organic Chemistry, London: Cornell Univ. Press, 1969.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. I. Kraynik
    • 1
    Email author
  • V. N. Beresnev
    • 1
  • L. V. Agibalova
    • 1
  • A. V. Kurova
    • 1
  1. 1.Lebedev Research Institute of Synthetic RubberSt. PetersburgRussia

Personalised recommendations