Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 10, pp 1626–1634 | Cite as

Recovery and Preconcentration of Phenols from Aqueous Solutions with a Magnetic Sorbent Based on Fe3O4 Nanoparticles and Hyper-Cross-Linked Polystyrene

  • A. S. GubinEmail author
  • P. T. Sukhanov
  • A. A. Kushnir
  • E. D. Proskuryakova
Macromolecular Compounds and Polymeric Materials
  • 10 Downloads

Abstract

A procedure was suggested for recovering and concentrating phenols (phenol, 4-nitrophenol, 2-chlorophenol, and pentachlorophenol) from aqueous solution using a newly synthesized sorbent: magnetite nanoparticles modified with hyper-cross-linked polystyrene. The sorbent particle size, limiting sorption, specific surface area, and saturation magnetization were determined. A novel concentrating cartridge that ensures sorption under dynamic conditions using the magnetic sorbent was developed, and its performance was evaluated. The dynamic sorption allows quantitative recovery of phenols with a concentration factor of 530–1360.

Keywords

phenols preconcentration hyper-cross-linked polystyrene magnetic nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grynkiewicz, M., Polkowska, Z., Kot-Wasik, A., and Namiesnik, J., Pol. J. Environ. Stud., 2002, vol. 11, no. 1, pp. 85–89.Google Scholar
  2. 2.
    Faraji, M., Nanochem. Res., 2016, vol. 1, no. 2, pp. 264–290.Google Scholar
  3. 3.
    Mihoc, G., Ianos, R., and Pacurariu, C., Water Sci. Technol., 2014, vol. 69, no. 2, pp. 385–391.CrossRefGoogle Scholar
  4. 4.
    Istratie, R., Stoia, M., Pacurariu, C., and Locovei, C., Arab. J. Chem., 2016, URL: https://www.sciencedirect.com/science/article/pii/S1878535215003408 (addressed Aug, 8, 2018).Google Scholar
  5. 5.
    Malihe, K.S., Syed, W.H., Mohammad, S.T., Mehdinuia, A., and Aberoomand, A.P., Indian J. Sci. Res., 2014, vol. 5, no. 1, pp 362–368.Google Scholar
  6. 6.
    Mehdinia, A., Dadkhah, S., Baradaran, T., and Jabbari, A., J. Chromatogr. A, 2014, vol. 1364, pp. 12–19.CrossRefGoogle Scholar
  7. 7.
    Zhou, Q., Yuan, Y., Wu, Y., and Liu, Y., J. Sep. Sci., 2017, vol. 40, pp. 4032–4040.CrossRefGoogle Scholar
  8. 8.
    Ye, Q., Liu, L., Chen, Z., and Hong, L., J. Sep. Sci., 2016, vol. 39, pp. 1684–1690.CrossRefGoogle Scholar
  9. 9.
    Majlesi, M. and Daraei, H., World Rev. Sci. Technol. Sustain. Develop., 2016, vol. 12, no. 4, pp. 371–380.CrossRefGoogle Scholar
  10. 10.
    Tural, B., Ertas, E., and Tural, S., Desalin. Water Treat., 2016, vol. 57, no. 54, pp. 26153–26154.CrossRefGoogle Scholar
  11. 11.
    Alcudia-León, M.C., Lucena, R., Cárdenas, S., and Valcárcel, M., Anal. Bioanal. Chem., 2013, vol. 405, pp. 2729–2734.CrossRefGoogle Scholar
  12. 12.
    Shabnam, R. and Ahmad, H., Rajshahi Univ. J. Sci. Eng., 2016, vol. 44, pp. 55–59.CrossRefGoogle Scholar
  13. 13.
    Davankov, V.A. and Tsyurupa, M.P., Hypercrosslinked Polymeric Networks and Adsorbing Materials, Synthesis, Structure, Properties and Application, New York: Elsevier, 2011.Google Scholar
  14. 14.
    Sukhanov, P.T., Gubin, A.S., Kushnir, A.A., Bogdaev, A.A., Safonov, S.V., and Kretinin, A.V., Chem. Petrol. Eng., 2018, vol. 53, nos. 9–10, pp. 674–678.CrossRefGoogle Scholar
  15. 15.
    Kushnir, A.A., Sukhanov, P.T., Churilina, E.V., and Shatalov, G.V., Russ. J. Appl. Chem., 2014, vol. 87, no. 5, pp. 579–584.CrossRefGoogle Scholar
  16. 16.
    Kang, U.C., Wang, Y., Li, R., Du, Y., Li, J., Zhang, B., Zhou, L., and Du, Y., Microchem. J., 2000, vol. 64, no. 2, pp. 161–171.CrossRefGoogle Scholar
  17. 17.
    Xie, Y.H., Yu, H., Pan, Y.H., Li, Q., Wang, Q., Ding, L., Xu, Y., and Zhu, T., J. Chem. Pharm. Res., 2014, vol. 6, no. 6, pp. 110–115.Google Scholar
  18. 18.
    Sao, A., Pillai, A.K., and Gupta, V.K., Indian J. Chem. Technol., 2006, vol. 13, pp. 294–297.Google Scholar
  19. 19.
    Liu, Q.-Q., Li, W., Xiao, A-G., Yu, H.-J., and Tan, Q.-H., Eur. Polym. J., 2008, vol. 44, no. 8, pp. 2516–2522.CrossRefGoogle Scholar
  20. 20.
    Tsyurupa, M.P., Blinnikova, Z.K., and Davankov, V.A., Russ. J. Phys. Chem. A, 2010, vol. 84, no. 10, pp. 1767–1771.CrossRefGoogle Scholar
  21. 21.
    Pan, B.C., Zhang, X., Zhang, W.M., Zheng, J.Z., Pan, B.J., Chen, J.L., and Zhang, Q.X., J. Hazard. Mater., 2005, vol. 121, nos. 1–3, pp. 233–241.CrossRefGoogle Scholar
  22. 22.
    Fu, Z., Han, S., Huang, J., and Liu, Y., RSC Adv., 2016, no. 6, pp. 32340–32348.CrossRefGoogle Scholar
  23. 23.
    Martynenko, E.S., Solodovnichenko, V.S., Kryazhev, Y.G., Arbuzov, A.B., Kalinina, T.A., and Likholobov, V.A., Solid Fuel Chem., 2015, vol. 59, no. 6. pp. 387–391.CrossRefGoogle Scholar
  24. 24.
    Ma, Y., Zhou, Q., Li, A., Shuang, C., Shi, Q., and Zhang, M., J. Hazard. Mater., 2014, vol. 266, pp. 84–93.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Gubin
    • 1
    Email author
  • P. T. Sukhanov
    • 1
  • A. A. Kushnir
    • 1
  • E. D. Proskuryakova
    • 1
  1. 1.Voronezh State University of Engineering TechnologiesVoronezhRussia

Personalised recommendations