Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 10, pp 1588–1596 | Cite as

Effect of the Calorific Intensity of Combustion Chamber on Production of Synthesis Gas in Partial Oxidation of Methane–Oxygen Mixtures in the Combustion Mode

  • N. N. Buravtsev
  • Yu. A. Kolbanovskii
  • I. V. Rossikhin
  • I. V. Bilera
Physicochemical Studies of Systems and Processes
  • 6 Downloads

Abstract

Optimal design of a flow-through chemical reactor with increased calorific intensity was experimentally sought for in partial oxidation of natural gas by oxygen at oxidant excess factors in the range 0.27 < α < 0.4. It was shown that this reactor with a chamber for additional turbulent mixing of the starting components, turbulizer, and supercritical pressure difference at the outlet from the combustion chamber can provide a combustion mode close to the process in the plug-flow reactor. The increase in the calorific intensity of the combustion chamber of the reactor as a result of a decrease in its volume leads to full conversion of the starting reagents and to lower carbon-black formation.

Keywords

turbulent combustion natural gas partial oxidation synthesis gas flow-through reactor calorific intensity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aasberg-Petersen, K., Bak Hansen, J.-H.B., Christensen, T.S., Dybkjaer, I., Christensen, P.S., Stub Nielsen, C., Winter Madsen, S.E.L., and Rostrup-Nielsen, J.R., Appl. Catal., A, 2001, vol. 221, pp. 379–387.CrossRefGoogle Scholar
  2. 2.
    Wilhelm, D.J., Simbeck, D.R., Karp, A.D., and Dickenson, R.L., Fuel Proc. Technol., 2001, vol. 71, pp. 139–148.CrossRefGoogle Scholar
  3. 3.
    Fal’kevich, G.S., Topchii, V.A., Kakichev, A.P., Rostanin, N.N., Vilenskii, L.M., Nemira, K.B., and Nefedov, B.K., Katal. Prom–sti, 2003., no. 3, pp. 10–21.Google Scholar
  4. 4.
    Hiller, H., Reimert, R., Marschner F. Renner, H.-J., Boll, W., Supp, E., Brejc, M., Liebner, W., Schaub, G., Hochgesand, G., Hilman, C., Kalteier, P., Müller, W.-D., Kriebel, M., Schlichting, H., Tanz, H., Stönner, H.-M., Klein, H., Hilsebein, W., Gronemann, V., Zwiefelhofer, U., Albrecht, J., Cowper, C.J., and Driesen, H.E., Gas Production: in Ullman’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2007. https://onlinelibrary.wiley.com/doi/abs/10.1002/14356007. a12_169.pub2 (access date: 30.08.2007).Google Scholar
  5. 5.
    Bonneau, R., Hydrocarbon Process., 2010, no. 4, pp. 33–42.Google Scholar
  6. 6.
    Corke, M., Oil Gas J., 1998, vol. 96, no. 38, pp. 71–77.Google Scholar
  7. 7.
    Savchenko, V.I., Makaryan, I.A., Fokin, I.G., Sedov, I.V., Magomedov, R.N., Lipilin, M.G., and Arutyunov, V.S., Neftepererab. Neftekhim., 2013., no. 8, pp. 21–26.Google Scholar
  8. 8.
    Kolbanovskii, Yu.A., Bilera, I.V., Rossikhin, I.V., Borisov, A.A., and Troshin, K.Ya., Russ. J. Gen. Chem., 2011, vol. 81, no. 12, pp. 2594–2603.CrossRefGoogle Scholar
  9. 9.
    Lewis, B. and von Elbe, G., Combustion, Flames and Explosions of Gases, New York: Acad. Press, Inc., 1961.Google Scholar
  10. 10.
    Sister, V.G., Borisov, A.A., Troshin, K.Ya., Bilera, I.V., Bogdanov, V.A., Politenkova, G.G., and Kolbanovskii, Yu.A., Khim. Fiz., 2006, vol. 25, no. 1, pp. 61–68.Google Scholar
  11. 11.
    Warnatz, J., Maas, U., and Dibble, R.W., Combustion, Physical and Chemical Fundamentals, Modeling and Simulations, Experiments, Pollutant Formation, Springer, 2001.Google Scholar
  12. 12.
    Raushenbakh, B.V., Vibratsionnoe gorenie (Vibrational Combustion), Moscow: Fiz-mat. lit., 1961, p.474.Google Scholar
  13. 13.
    RF Patent 2 320 531 (publ. 2008).Google Scholar
  14. 14.
    RF Patent 2 412 109 (publ. 2011).Google Scholar
  15. 15.
    Bilera, I.V., Kolbanovskii, Yu.A., and Rossikhin, I.V., Gazokhimiya, 2011., nos. 3–4, pp. 41–45.Google Scholar
  16. 16.
    Kolbanovskii, Yu.A., Bilera, I.V., Buravtsev, N.N., and Rossikhin, I.V., NefteGazoKhimiya, 2015., no. 1, pp. 28–32.Google Scholar
  17. 17.
    Makhlin, V.A., Khim. Prom–st’ Segodnya, 2006., no. 8, pp. 13–19.Google Scholar
  18. 18.
    El’terman, V.M., Ventilyatsiya khimicheskikh proizvodstv (Ventilation of Chemical Shops), Moscow: Khimiya, 1980.Google Scholar
  19. 19.
    Harriott, P., Chemical Reactor Design, New York: Marcel Dekker, 2003.Google Scholar
  20. 20.
    COMSOL Multiphysics: https://www.comsol.com/chemical-reaction-engineering-module (access date: 05.07.2018).
  21. 21.
    Smith, G.P., Golden, D.M., Frenklach, M., Mo riarty, N.W., Eiteneer, B., Goldenberg, M., Bow man, C.T., Hanson, R.K., Song, S., Gar diner Jr., W.C., Lissianski, V.V., and Qin, Z.W., http://combustion.berkeley.edu/grimech (access date: 05.07.2018).
  22. 22.
    Miller, S.A., Acetylene, Its Properties, Manufacture and Uses, vol. 1,. London: Ernst Benn Ltd, 1965.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. N. Buravtsev
    • 1
  • Yu. A. Kolbanovskii
    • 1
  • I. V. Rossikhin
    • 1
  • I. V. Bilera
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations