Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 10, pp 1581–1587 | Cite as

Combustion Rate of Solid Fuels in the Superadiabatic Mode

  • S. V. GlazovEmail author
  • V. M. Kislov
  • E. A. Salgansky
Physicochemical Studies of Systems and Processes
  • 11 Downloads

Abstract

Theoretical and experimental dependences of the combustion front propagation velocity in a layer of a solid carbon fuel on various external factors and conditions were examined in the case of filtration of the gaseous oxidizing agent. Particular attention was given to the superadiabatic modes with heat accumulation. It was shown that, in the case of a superadiabatic filtration combustion mode, the combustion velocity is primarily determined by the supply rate of the oxidizing agent and by the stoichiometric process ratio for particular conditions.

Keywords

filtration combustion superadiabatic mode combustion velocity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Manelis, G.B., Glazov, S.V., Salgansky, E.A., and Lempert, D.B., Russ. Chem. Rev., 2012, vol. 81, no. 9, pp. 855–873.CrossRefGoogle Scholar
  2. 2.
    Levin, V.A. and Lutsenko, N.A., Doklady Phys., 2017, vol. 62, no. 9, pp. 425–429.CrossRefGoogle Scholar
  3. 3.
    Aldushin, A.P., Zel'dovich, Ya.B., and Khudyaev, S.I., Combust., Explos. Shock Waves, 1979, vol. 15, no. 6, p.705.CrossRefGoogle Scholar
  4. 4.
    Glushkov, D.O. and Strizhak, P.A., J. Cleaner Prod., 2017, vol. 165, pp. 1445–1461.CrossRefGoogle Scholar
  5. 5.
    Aldushin, A.P., Seplyarskii, B.S., and Shkadinskii, K.G., Combust., Explos. Shock Waves, 1980, vol. 16, no. 1, pp. 33–40.CrossRefGoogle Scholar
  6. 6.
    Babkin, V.S., Vierzba, I., and Karim, G.A., Combust., Explos. Shock Waves, 2002, vol. 38, no. 1, pp. 1–8.CrossRefGoogle Scholar
  7. 7.
    Manelis, G.B., Glazov, S.V., Lempert, D.B., and Salgansky, E.A., Russ. Chem. Bull., 2011, vol. 60, no. 7, pp. 1301–1317.CrossRefGoogle Scholar
  8. 8.
    Aldushin, A.P., Rumanov, I.E., and Matkowsky, B.J., Combust. Flame, 1999, vol. 118, nos. 1–2, pp. 76–90.CrossRefGoogle Scholar
  9. 9.
    Lutsenko, N.A., Combust. Theory Model l., 2018, vol. 22, no. 2, pp. 359–377.CrossRefGoogle Scholar
  10. 10.
    Salgansky, E.A., Kislov, V.M., Glazov, S.V., Zholudev, A.F., and Manelis, G.B., Combust., Explos. Shock Waves, 2008, vol. 44, no. 3, pp. 273–280.CrossRefGoogle Scholar
  11. 11.
    Salganskii, E.A., Kislov, V.M., Glazov, S.V., Zholudev, A.F., and Manelis, G.B., Combust., Explos. Shock Waves, 2010, vol. 46, no. 5, pp. 528–532.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Glazov
    • 1
    Email author
  • V. M. Kislov
    • 1
  • E. A. Salgansky
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations