Russian Journal of Applied Chemistry

, Volume 91, Issue 10, pp 1559–1573 | Cite as

Nanosized Additives to Lubricating Materials

  • E. Yu. Oganesova
  • A. S. LyadovEmail author
  • O. P. Parenago


The review deals with the synthesis and use of nanosized additives in friction and wear processes. Various types of nanosized additives are considered, and their performance as friction modifiers is demonstrated. The influence exerted on the antiwear performance of lubricating materials by the size and concentration of the introduced particles differing in the chemical nature is considered. Methods for preparing nanosized additives and stabilizing them in lubricating materials are described.


lubricating materials friction and wear additives nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braithwaite, E.R. and Greene, A.B., Wear, 1978, vol. 46, pp. 405–432.Google Scholar
  2. 2.
    Groszek, A.J., ASLE Trans., 1966, vol. 9, pp. 67–76.Google Scholar
  3. 3.
    Sebnik, R.F., NLGI Spokesman, 1993, vol. 57, pp. 96–106.Google Scholar
  4. 4.
    Epshteyn, Y. and Risdon, T.J., in Proc. 12th Conf. on Greases, Goa (India), 2010.Google Scholar
  5. 5.
    Rastogi, R.B. and Yadav, M., Tribol. Int., 2003, vol. 36, pp. 511–516.Google Scholar
  6. 6.
    Mitchell, P.S., Wear, 1984, vol. 100, pp. 281–300.Google Scholar
  7. 7.
    Spikes, H., Lubricat. Sci., 2008, vol. 20, pp. 103–136.Google Scholar
  8. 8.
    Tang, Z. and Li, S., Curr. Opin. Solid State Mater. Sci., 2014, vol. 18, pp. 119–139.Google Scholar
  9. 9.
    Parenago, O.P., Kuzmina, G.N., and Zaimovskaya, T.A., Petrol. Chem., 2017, vol. 57, pp. 631–642.Google Scholar
  10. 10.
    Rudnick, L.R., Lubricant Additives: Chemistry and Applications, Taylor & Francis, 2009, 2nd ed. Translated under the title Prisadki k smazochnym materialam. Svoistva i primenenie, Danilov, A.M., Ed., St. Petersburg: Professiya, 2013, pp. 268–271.Google Scholar
  11. 11.
    Liu, W., Xue, Q., Zhang, X., and Wang, H., Lubricat. Sci., 1993, vol. 6, pp. 41–49.Google Scholar
  12. 12.
    Ren, T., Liu, W., Xue, Q., and Wang, H., Lubricat. Sci., 1993, vol. 5, pp. 205–212.Google Scholar
  13. 13.
    Liu, W., Zhang, Z., Chen, S., and Xue, Q., J. Dispers. Sci. Technol., 2000, vol. 21, pp. 469–490.Google Scholar
  14. 14.
    Bakunin, V.N., Suslov, A.Yu., Kuz’mina, G.N., and Parenago, O.P., J. Nanopart. Res., 2004, vol. 6, pp. 273–284.Google Scholar
  15. 15.
    Chinas-Castillo, F. and Spikes, H., J. Tribol., 2003, vol. 125, pp. 552–557.Google Scholar
  16. 16.
    Wu, Y.Y., Tsui, W.C., and Liu, T.C., Wear, 2007, vol. 262, pp. 819–825.Google Scholar
  17. 17.
    Kharlamov, V., Zolotukhina, L., Frishberg, I., and Kishkoparov, N., Frict. Wear, 1999, vol. 20, pp. 333–338.Google Scholar
  18. 18.
    Zhou, J., Yang, J., Zhang, Z., Liu, W., and Xue, Q., Mater. Res. Bull., 1999, vol. 34, pp. 1361–1367.Google Scholar
  19. 19.
    Hu, Z.S., Lai, R., Lou, F., Wang, L., Chen, Z., and Chen, G., Wear, 2002, vol. 252, pp. 370–374.Google Scholar
  20. 20.
    Rastogi, R., Yadav, M., and Bhattacharya, A., Wear, 2002, vol. 252, pp. 686–692.Google Scholar
  21. 21.
    Liu, G., Li, X., Qin, B., Xing, D., Guo, Y., and Fan, R., Tribol. Lett., 2004, vol. 17, pp. 961–966.Google Scholar
  22. 22.
    Lee, K., Hwang, Y., Cheong, S., Choi, Y., Kwon, L., and Lee, J., Tribol. Lett., 2009, vol. 35, pp. 127–131.Google Scholar
  23. 23.
    Xue, Q., Liu, W., and Zhang, Z., Wear, 1997, vol. 213, pp. 29–32.Google Scholar
  24. 24.
    Hu, Z.S. and Dong, J.X., Wear, 1998, vol. 216, pp. 92–96.Google Scholar
  25. 25.
    Oganesova, E.Yu., Kuz’mina, G.N., Bordubanova, E.G., Khodzhaeva, V.L., Ezhov, A.A., Parenago, O.P., and Ivanov, V.K., Petrol. Chem., 2012, vol. 52, pp. 204–207.Google Scholar
  26. 26.
    Wang, J., Rose, K.C., and Lieber, C.M., J. Phys. Chem. B, 1999, vol. 103, pp. 8405–8409.Google Scholar
  27. 27.
    Hu, Z.S., Dong, J.X., and Chen, G.X., Tribol. Int., 1998, vol. 31, pp. 355–360.Google Scholar
  28. 28.
    Zhang, Z.J., Zhang, J., and Xue, Q.J., J. Phys. Chem., 1994, vol. 98, pp. 12973–12977.Google Scholar
  29. 29.
    Zhang, Z., Xue, Q., and Zhang, J., Wear, 1997, vol. 209, nos. 1–2, pp. 8–12.Google Scholar
  30. 30.
    Chen, S., Liu, W., and Yu, L., Wear, 1998, vol. 218, pp. 153–158.Google Scholar
  31. 31.
    Liu, W. and Chen, S., Wear, 2000, vol. 238, pp. 120–124.Google Scholar
  32. 32.
    Hu, Z.S. and Dong, J.X., Wear, 1998, vol. 216, pp. 87–91.Google Scholar
  33. 33.
    Dong, J.X. and Hu, Z.S., Tribol. Int., 1998, vol. 31, pp. 219–223.Google Scholar
  34. 34.
    Hu, Z.S., Dong, J.X., Chen, G.X., and He, J.Z., Wear, 2000, vol. 243, pp. 43–47.Google Scholar
  35. 35.
    Hu, Z.S., Shi, Y.G., Wang, L.G., Peng, Y., Chen, G.X., and Dong, J.X., Lubricat. Eng., 2001, vol. 3, pp. 23–27.Google Scholar
  36. 36.
    Chen, G.X., Hu, Z.S., Dong, J.X., Wang, L.G., Peng, Y., He, T., and Lai, R., Lubricat. Eng., 2001, vol. 4, pp. 36–39.Google Scholar
  37. 37.
    Qiu, S.Q., Zhou, Z.R., Dong, J.X., and Chen, G.X., J. Tribol., 2001, vol. 123, pp. 441–443.Google Scholar
  38. 38.
    Qiu, S.Q., Dong, J.X., and Chen, G.X., Wear, 1999, vol. 230, pp. 35–38.Google Scholar
  39. 39.
    Ye, P., Jiang, X., Li, Shu, and Li, S., Wear, 2002, vol. 253, pp. 572–575.Google Scholar
  40. 40.
    Zhou, J., Yang, J., Zhang, Z., Liu, W., and Xue, Q., Mater. Res. Bull., 1999, vol. 34, pp. 1361–1367.Google Scholar
  41. 41.
    Tarasov, S., Kolubaev, A., Belyaev, S., Lerner, M., and Tepper, F., Wear, 2002, vol. 252, pp. 63–69.Google Scholar
  42. 42.
    Chou, R., Hernández Battez, A., Cabello, J.J., Viesca, J.L., Osorio, A., and Sagastume, A., Tribol. Int., 2010, vol. 43, pp. 2327–2332.Google Scholar
  43. 43.
    Dai, W., Kheireddin, B., Gao, H., and Liang, H., Tribol. Int., 2016, vol. 102, pp. 88–98.Google Scholar
  44. 44.
    Choi, Y., Lee, C., Hwang, Y., Park, M., Lee, J., Choi, C., and Jung, M., Curr. Appl. Phys., 2009, vol. 9, pp. 124–127.Google Scholar
  45. 45.
    Wang, X.L., Yin, Y.L., Zhang, G.N., Wang, W.Y., and Zhao, K.K., Phys. Proc., 2013, vol. 50, pp. 466–472.Google Scholar
  46. 46.
    Padgurskas, J., Rukuiza, R., Prosycevas, I., and Kreivaitis, R., Tribol. Int., 2013, vol. 60, pp. 224–232.Google Scholar
  47. 47.
    Wang, X.L., Xu, B.S., Xu, Y., Yu, H.L., Shi, P.J., and Liu, Q., J. Central South Univ. Technol., 2005, vol. 12, pp. 203–206.Google Scholar
  48. 48.
    Yu, H.L., Xu, Y., and Shi, P.J., Trans. Nonferr. Met. Soc. China, 2008, vol. 18, pp. 636–641.Google Scholar
  49. 49.
    Viesca, J.L., Hernández Battez, A., González, R., Chou, R., and Cabello, J.J., Tribol. Int., 2011, vol. 44, pp. 829–833.Google Scholar
  50. 50.
    Xiong, X., Kang, Y., Yang, G., Zhang, S., Yu, L., and Zhang, P., Tribol. Lett., 2012, vol. 46, pp. 211–220.Google Scholar
  51. 51.
    Zhang, S., Hua, L., Feng, D., and Wang, H., Vacuum, 2013, vol. 87, pp. 75–80.Google Scholar
  52. 52.
    Ghalme, S. and Bhalerao, Y.J., Recent Pat. Mater. Sci., 2017, vol. 10, no. 2, pp. 88–96.Google Scholar
  53. 53.
    Hernández Battez, A., Viesca, J.L., González, R., Blanco, D., Asedegbega, E., and Osorio, A., Wear, 2010, vol. 268, pp. 325–328.Google Scholar
  54. 54.
    Asrul, M., Zulkifli, N.W.M., Masjuki, H.H., and Kalam, M.A., Proc. Eng., 2013, vol. 68, pp. 320–325.Google Scholar
  55. 55.
    Alves, S.M., Mello, V.S., Faria, E.A., and Camargo, A.P.P., Tribol. Int., 2016, vol. 100, pp. 263–271.Google Scholar
  56. 56.
    Shahnazar, S., Bagheri, S., and Abd Hamid, S.B., Int. J. Hydrogen Energy, 2016, vol. 41, pp. 3153–3170.Google Scholar
  57. 57.
    Hernandez Battez, A., Fernandez Rico, J.E., Navas Arias, A., Viesca Rodriguez, J.L., Chou Rodriguez, R., and Diaz Fernandez, J.M., Wear, 2006, vol. 261, pp. 256–263.Google Scholar
  58. 58.
    Sepyani, K., Afrand, M., and Hemmat Esfe, M., J. Mol. Liq., 2017, vol. 236, pp. 198–204.Google Scholar
  59. 59.
    Hernández Battez, A., González, R., Viesca, J.L., Fernández, J.E., Díaz Fernández, J.M., Machado, A., Choud, R., and Riba, J., Wear, 2008, vol. 265, pp. 422–428.Google Scholar
  60. 60.
    Luo, T., Wei, X., Huang, X., Huang, L., and Yang, F., Ceram. Int., 2014, vol. 40, pp. 7143–7149.Google Scholar
  61. 61.
    Zhou, G., Zhu, Y., Wang, X., Xia, M., Zhang, Y., and Ding, H., Wear, 2013, vol. 301, pp. 753–757.Google Scholar
  62. 62.
    Xue, Q. and Liu, W., Wear, 1997, vol. 213, pp. 29–32.Google Scholar
  63. 63.
    Hu, Z.S. and Dong, J.X., Wear, 1998, vol. 216, pp. 92–96.Google Scholar
  64. 64.
    Patent US 2006/0011114651 A1, Publ. 2006.Google Scholar
  65. 65.
    Patent US 2007/2606256436.4C, Publ. 2007.Google Scholar
  66. 66.
    Wu, Y.Y., Tsui, W.C., and Liu, T.C., Wear, 2007, vol. 262, pp. 819–825.Google Scholar
  67. 67.
    Ingole, S., Charanpahari, A., Kakade, A., Umare, S.S., Bhatt, D.V., and Menghani, J., Wear, 2013, vol. 301, pp. 776–785.Google Scholar
  68. 68.
    Zhang, L., Chen, L., Wan, H., Chen, J., and Zhou, H., Tribol. Lett., 2011, vol. 41, pp. 409–416.Google Scholar
  69. 69.
    Sabareesh, R.K., Gobinath, N., Sajith, V., Das, S., and Sobhan, C.B., Int. J. Refrig., 2012, vol. 35, pp. 1989–1996.Google Scholar
  70. 70.
    Laad, M. and Jatti, V.K.S., Eng. Sci., 2018, vol. 30, pp. 116–122.Google Scholar
  71. 71.
    Song, X., Zheng, S., Zhang, J., Li, W., Chen, Q., and Cao, B., Mater. Res. Bull., 2012, vol. 47, pp. 4305–4310.Google Scholar
  72. 72.
    Luo, T., Wei, X., Zhao, H., Li, W., Chen, Q., and Cao, B., Ceram. Int., 2014, vol. 40, part A, pp. 10103–10109.Google Scholar
  73. 73.
    Li, W., Zheng, S., Cao, B., and Ma, S., J. Nanopart. Res., 2011, vol. 13, pp. 2129–2137.Google Scholar
  74. 74.
    Biswas, S.K. and Sahoo, R.R., Molybdenum: Characteristics, Production and Application, Ortiz, M. and Herrera, T., Eds., New York: Nova Science, 2012.Google Scholar
  75. 75.
    Rapoport, L., Lvovsky, M., Lapsker, L., Leshchinsky, V., Volovik, Yu., Feldman, Y., and Tenne, R., Wear, 2001, vol. 249, pp. 149–156.Google Scholar
  76. 76.
    Rapoport, L., Leshchinsky, V., Lvovsky, M., Nepomnyashchy, O., Volovik, Yu., and Tenne, R., Wear, 2002, vol. 252, pp. 518–527.Google Scholar
  77. 77.
    Rapoport, L., Leshchinsky, V., Lvovsky, M., Nepomnyashchy, O., Volovik, Yu., and Tenne, R., Ind. Lubricat. Tribol., 2002, vol. 54, pp. 171–176.Google Scholar
  78. 78.
    Rapoport, L., Leshchinsky, V., Lapsker, I., Volovik, Yu., Lvovsky, M., Popovitz-Biro, R., Feldman, R., and Tenne, R., Wear, 2003, vol. 255, pp. 785–793.Google Scholar
  79. 79.
    Rapoport, L., Moshkovith, A., Perfilyev, V., and Tenne, R., Tribol. Lett., 2007, vol. 28, pp. 81–87.Google Scholar
  80. 80.
    Feldman, Y., Zak, A., Popovitz-Biro, R., and Tenne, R., Solid State Sci., 2000, vol. 2, pp. 663–672.Google Scholar
  81. 81.
    Rosentsveig, R., Gorodnev, A., Feuerstein, N., Friedman, H., Zak, A., Fleischer, N., Tannous, J., Dassenoy, F., and Tenne, R., Tribol. Lett., 2009, vol. 36, pp. 175–182.Google Scholar
  82. 82.
    Parenago, O.P., Bakunin, V.N., Kuz’mina, G.N., Suslov, A. Yu., and Vedeneeva, L.M., Dokl. Chem., 2002, vol. 383, pp. 86–88.Google Scholar
  83. 83.
    Suslov, A.Yu., Bakunin, V.N., Kuz’mina, G.N., Vedeneeva, L.M., and Parenago, O.P., Petrol. Chem., 2003, vol. 43, pp. 192–196.Google Scholar
  84. 84.
    Bakunin, V.N., Suslov, A.Yu., Kuz’mina, G.N., Vedeneeva, L.M., Parenago, O.P., Migdal, C.A., and Stott, P.E., Lubricat. Sci., 2004, vol. 16, pp. 207–214.Google Scholar
  85. 85.
    Patent WO 2004/037957, Publ. 2004.Google Scholar
  86. 86.
    Suslov, A.Yu., Bondarenko, G.N., Bakunin, V.N., Kuz’mina, G.N., Parenago, O.P., Petrol. Chem., 2005, vol. 45, pp. 17–20.Google Scholar
  87. 87.
    Bakunin, V.N., Suslov, A.Yu., Kuz’mina, G.N., and Parenago, O.P., Lubricat. Sci., 2005, vol. 17, pp. 127–145.Google Scholar
  88. 88.
    Oganesova, E.Yu., Zaymovskaya, T.A., Bordubanova, E.G., Lyadov, A.S., Litmanovich, E.A., and Parenago, O.P., Nanotechnol. Russ., 2016, vol. 11, pp. 312–316.Google Scholar
  89. 89.
    Wu, J.F., Zhai, W.S., and Jie, G.F., Proc. Inst. Mech. Eng., 2009, vol. 223, pp. 695–703.Google Scholar
  90. 90.
    Kang, X., Wang, B., Zhu, L., and Zhu, H., Wear, 2008, vol. 265, pp. 150–154.Google Scholar
  91. 91.
    Liu, W. and Chen, S., Wear, 2000, vol. 238, pp. 120–124.Google Scholar
  92. 92.
    Chen, S. and Liu, W., Mater. Chem. Phys., 2006, vol. 98, pp. 183–189.Google Scholar
  93. 93.
    Zhang, L.L., Tu, J.P., Wu, H.M., and Yang, Y.Z., Mater. Sci. Eng. A, 2007, vols. 454–455, pp. 487–491.Google Scholar
  94. 94.
    Yang, J., Yao, H., Liu, Y., and Zhang, Y., Nanoscale Res. Lett., 2008, vol. 3, pp. 481–485.Google Scholar
  95. 95.
    Salavati-Niasari, M., Loghman-Estarki, M.R., and Davar, F., J. Alloys Compd., 2009, vol. 475, pp. 782–788.Google Scholar
  96. 96.
    Cox, D.M., Trevor, D.J., Whetten, R.L., and Kaldor, A.J., J. Phys. Chem., 1998, vol. 92, pp. 421–429.Google Scholar
  97. 97.
    Petrov, Yu.I., Shafranovskii, E.A., Krupyanskii, Yu.F., and Esin, S.V., Dokl. Phys. Chem., 2001, vol. 379, nos. 1–3, p.194.Google Scholar
  98. 98.
    Tsung, T.T., Chang, H., Chen, L.C., Liu, M.K., Lin, H.M., and Lin, C.K., Int. J. Adv. Manufact. Technol., 2004, vol. 24, pp. 879–885.Google Scholar
  99. 99.
    Li, X.G., Chiba, A., Takahashi, S., Ohsaki, K., and Magn, J., J. Magn. Magn. Mater., 1997, vol. 173, pp. 101–108.Google Scholar
  100. 100.
    Kuznetsov, V.A., Lipson, A.G., and Sakov, D.M., Zh. Fiz. Khim., 1993, vol. 67, no. 4, pp. 782–785.Google Scholar
  101. 101.
    Hong, S.J., Suryanarayana, C., and Chun, B.S., Scripta Mater., 2001, vol. 45, pp. 1341–1347.Google Scholar
  102. 102.
    Maiorov, M., Blums, E., Kronkalns, G., Krumina, A., and Lubane, M., Latv. J. Phys. Techn. Sci., 2016, no. 4, pp. 30–35.Google Scholar
  103. 103.
    Becker, J.A., Schafer, R., Festag, J.R., Wendorff, J.H., Hensel, F., Pebler, J., Quaiser, S.A., Helbug, W., and Reetz, M.T., Surf. Rev. Lett., 1996, vol. 3, pp. 1121–1126.Google Scholar
  104. 104.
    Pascal, C., Pascal, J.L., Favier, F., Elidrissi Moubtassim, M.L., and Payen, C., Chem. Mater., 1999, vol. 11, pp. 141–147.Google Scholar
  105. 105.
    Yang, G., Chai, S., Xiong, X., Zhang, S., Yu, L., and Zhang, P., Trans. Nonferr. Met. Soc. China, 2012, vol. 22, pp. 366–372.Google Scholar
  106. 106.
    Wang, L., Zhao, C., Meng, F., Huang, S., Yuan, X., Xu, X., Yang, Z., and Yang, H., Colloids Surf. A: Physicochem. Eng. Aspects, 2010, vol. 360, pp. 205–209.Google Scholar
  107. 107.
    Parenago, O.P. and Kuz’mina, G.N., Petrol. Chem., 2010, vol. 50, pp. 319–324.Google Scholar
  108. 108.
    Parenago, O.P., Kuzmina, G.N., Terechin, D.V., and Basharina, K.Yu., Sci. Probl. Mach. Oper. Maint., 2010, vol. 45, pp. 7–14.Google Scholar
  109. 109.
    Fu, X., Wu, D.M., Zhou, H.D., Shi, H.Q., and Hu, Z.S., J. Nanopart.Res., 2007, vol. 9, pp. 675–681.Google Scholar
  110. 110.
    Shi, H.Q., Zhou, X.D., and Fu, X., Mater. Lett., 2006, vol. 60, pp. 1793–1795.Google Scholar
  111. 111.
    Shi, H.Q., Fu, X., Zhou, X.D., Wang, D.B., and Hu, Z.S., J. Solid State Chem., 2006, vol. 179, pp. 1690–1697.Google Scholar
  112. 112.
    Pomogailo, A.D. and Rozenberg, A.S., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, 2000.Google Scholar
  113. 113.
    Sergeev, G.B., Nanokhimiya (Nanochemistry), Moscow: Mosk. Gos. Univ., 2003.Google Scholar
  114. 114.
    Xu, N., Zhang, M., Li, W., Zhao, G., Wang, X., and Liu, W., Wear, 2013, vol. 307, pp. 35–43.Google Scholar
  115. 115.
    Lahouij, I., Vacher, B., Martin, J., and Dassenoy, F., Wear, 2012, vol. 296, pp. 558–567.Google Scholar
  116. 116.
    Rabas, P., Ville, F., Dassenoy, F., Diaby, M., Afanasiev, P., Cavoret, J., Vacher, B., and LeMogne, T., Wear, 2014, vol. 320, pp. 161–178.Google Scholar
  117. 117.
    Zin, V., Agresti, F., Barison, S., Colla, L., Gondolini, A., and Fabrizio, M., IEEE Trans. Nanotechnol., 2013, vol. 12, pp. 751–759.Google Scholar
  118. 118.
    Hwang, Y., Lee, C., Choi, Y., Cheong, S., Kim, D., Lee, K., Lee, J., and Kim, S.H., J. Mech. Sci. Technol., 2011, vol. 25, pp. 2853–2857.Google Scholar
  119. 119.
    Ismagilov, Z.R., Tsikoza, L.T., Shikina, N.V., Zarytova, B.F., Zinov’ev, V.V., and Zagrebal’nyi, S.N., Russ. Chem. Rev., 2009, vol. 78, p.873.Google Scholar
  120. 120.
    Gubin, S.P., Colloids Surf. A: Physicochem. Eng. Aspects, 2002, vol. 202, pp. 155–163.Google Scholar
  121. 121.
    Quaroni, L. and Chumanov, G., J. Am. Chem. Soc., 1999, vol. 121, pp. 10642–10643.Google Scholar
  122. 122.
    Caponetti, E., Pedone, L., Martino, D.C., Pantò, V., and Liveri, V.T., Mater. Sci. Eng. C, 2003, vol. 4, pp. 531–539.Google Scholar
  123. 123.
    Steigerwald, M.L., Alivisatos, A.P., and Gibson, J.M., J. Am. Chem. Soc., 1988, vol. 110, pp. 3046–3050.Google Scholar
  124. 124.
    Chena, H.-J., Wang, L., and Chiu, W.-Y., Mater. Chem. Phys., 2007, vol. 101, pp. 12–19.Google Scholar
  125. 125.
    Chu, R., Yan, J., Lian, S., Wang, Y., Yan, F., and Chen, D., Solid State Commun., 2004, vol. 130, pp. 789–792.Google Scholar
  126. 126.
    Wan, Q., Jin, Y., Sun, P., and Ding, Y., Proc. Eng., 2015, vol. 102, pp. 1038–1045.Google Scholar
  127. 127.
    Yu, H.L., Xu, Y., Shi, P.J., Xu, B.S., Wang, X.L., Liu, Q., and Wang, H.M., Surf. Coat. Technol., 2008, vol. 203, pp. 28–34.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. Yu. Oganesova
    • 1
  • A. S. Lyadov
    • 1
    Email author
  • O. P. Parenago
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations