Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 9, pp 1528–1537 | Cite as

Influence of the Conditions of the Chemical Bath Deposition of Thin ZnSe Films on Their Morphology and Internal Mechanical Stresses

  • L. N. Maskaeva
  • V. F. Markov
  • E. A. Fedorova
  • M. V. Kuznetsov
Inorganic Synthesis and Industrial Inorganic Chemistry
  • 5 Downloads

Abstract

ZnSe films up to 2300 nm thick on glass-ceramic supports were prepared by chemical bath deposition in the ZnCl2–Na2EDTA–NaOH–NH2OH·HCl system using sodium selenosulfate as a chalcogenizer. The reflections observed in the X-ray diffraction patterns correspond to the ZnSe (stilleite) phase of cubic (space group F\(\overline 4 \)3m) structure with a = 5.610 ± 0.002 Å. As shown by electron-microscopic examination, ZnSe films consist of globular formations tightly adjoining to each other with the mean size of 250–400 nm depending on the deposition conditions. Elemental EDX analysis shows that the films contain, on the average, 43.68 at. % Zn, 30.50 at. % Se, and 25.82 at. % O, with the oxygen concentration somewhat decreasing at a depth of 30 nm. The internal mechanical compression stresses caused by the difference in the thermal expansion coefficients of the ZnSe film and glass-ceramic support were calculated; these stresses depend on the film thickness and at ~1040 nm reach–30.62 kN m–2. The results obtained make it possible to exclude film discontinuities, which can appear with increasing film thickness in preparation of precursor layers, and to choose the optimum support material.

Keywords

chemical bath deposition films zinc selenide sodium selenosulfate microstructure film morphology internal mechanical stresses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lokhande, C.D., Patil, P.S., Tributsch, H., and Ennaoui, A., Energy Mater. Solar Cells, 1998, vol. 55, pp. 379–393.CrossRefGoogle Scholar
  2. 2.
    Ganchev, M., Strahieva, N., Tsvetkova, E., and Gadjov, I., J. Mater. Sci. Mater. Electron., 2003, vol. 14, nos. 10–12, pp. 847–848.CrossRefGoogle Scholar
  3. 3.
    Bacaksız, E., Aksu, S., Polat, I., Yilmaz, S., and Altunbas, M., J. Alloys Compd., 2009, vol. 487, pp. 280–285.CrossRefGoogle Scholar
  4. 4.
    Mitzi, D.B., Gunawan, O., Todorov, T.K., Wang, K., and Guna, S., Solar Energy Mater. Solar Cells, 2011, vol. 95, pp. 1421–1436.CrossRefGoogle Scholar
  5. 5.
    Shin, S.W., Pawar, S.M., Park, C.Y.J.H., Moon Yun, J.-H., Kim, J.H., and Lee, J.Y., Solar Energy Mater. Solar Cells, 2011, vol. 95, no. 12, pp. 3202–3206.CrossRefGoogle Scholar
  6. 6.
    Kul’chitskii, N., Naumov, A., and Semenov, V., Fotonika, 2015, vols. 54–55, no. 6, p.90.Google Scholar
  7. 7.
    Markov, V.F., Maskaeva, L.N., and Ivanov, P.N., Gidrokhimicheskoe osazhdenie plenok sul’fidov metallov: modelirovanie i eksperiment (Chemical Bath Deposition of Metal Sulfide Films: Simulation and Experiment), Yekaterinburg: Ural’skoe Otdel. Ross. Akad. Nauk, 2006.Google Scholar
  8. 8.
    Wei, A., Zhao, X., Liu, J., and Zhao, Yu, Physica B: Condens. Matter, 2013, vol. 410, pp. 120–125.CrossRefGoogle Scholar
  9. 9.
    Zedan, I.T., Azab, A.A., and El-Menyawy, E.M., Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 2016, vol. 154, pp. 171–176.CrossRefGoogle Scholar
  10. 10.
    Thirumavalavan, S., Mani, K., and Sagadevan, S., Mater. Today: Proc., 2016, vol. 3, no. 6, pp. 2305–2314.CrossRefGoogle Scholar
  11. 11.
    Okereke, N.A. and Ekpunobi, A.J., J. Non-Oxide Glasses, 2011, vol. 3, no. 1, pp. 31–36.Google Scholar
  12. 12.
    Deshmukh, L.P., Pingale, P.C., Kamble, S.S., Lendave, S.A., Mane, S.T., Pirgonde, B.R., Madhuri Sharon, and Sharon, M., Mater. Lett., 2013. V. 92. P. 308–312.Google Scholar
  13. 13.
    Durdu, B.G., Alver, U., Kucukonder, A., Söğüt, Ö., and Kavgac, M., Acta Phys. Polon. A, 2013, vol. 124, no. 1, pp. 41–45.CrossRefGoogle Scholar
  14. 14.
    Agawane, G.L., Shin, S.W., Suryawanshi, M.P., and Kim, J.H., Mater. Lett., 2013, vol. 106, pp. 186–189.CrossRefGoogle Scholar
  15. 15.
    Yildirim, E., Gubur, H.M., Alpdogan, S., Harputlu, E., and Ocakoglu, K., Indian J. Phys., 2016, vol. 90, no. 7, pp. 793–803.CrossRefGoogle Scholar
  16. 16.
    Ho Soonmin, Am. Chem. Sci. J., 2016, vol. 14, no. 4, pp. 2249–0205.Google Scholar
  17. 17.
    Kavitha, M., Saroja, M., and Jenifer, G., Int. J. Mater. Sci. Eng., 2017, vol. 5, no. 3, pp. 110–115.Google Scholar
  18. 18.
    Shagurov, A.R. and Panin, A.V., Fiz. Mezomekh., 2009, vol. 12, no. 3, pp. 23–32.Google Scholar
  19. 19.
    Kuznetsov, M.V., Sovremennye metody issledovaniya poverkhnosti tverdykh tel: fotoelektronnaya spektroskopiya i difraktsiya, STM-mikroskopiya (Modern Methods for Studying the Surface of Solids: Photoelectron Spectroscopy and Diffraction, Scanning Tunneling Microscopy), Yekaterinburg: Ural’skoe Otdel. Ross. Akad. Nauk, 2010.Google Scholar
  20. 20.
    Kasimov, F.D. and Lyutfalibekova, A.E., Tekhnol. Konstr. Elektron. Appar., 2002, no. 2, pp. 13–14, dspace.nbuv. gov.ua/handle/123456789/70736.Google Scholar
  21. 21.
    Sadekar, H.K., Ghule, A.V., and Sharma, R., Composites: Part B, 2013, vol. 44, pp. 553–557.CrossRefGoogle Scholar
  22. 22.
    Yang, L.H., Luan, G., Chen Sun, Y., Kong, X., and Yang, J., J. Mater. Sci.: Mater. Electron., 2015, vol. 26, pp. 6986–6996.Google Scholar
  23. 23.
    Wei, A., Zhao, X., Zhao, Y., and Liu, J., J. Electron. Mater., 2013, vol. 42, pp. 684–691.CrossRefGoogle Scholar
  24. 24.
    Venkatachalam, S., Mangalaraj, D., and Narayandass, Sa.K., Appl. Surf. Sci., 2007, vol. 253, pp. 5137–5147.CrossRefGoogle Scholar
  25. 25.
    Lohar, G.M., Shinde, S.K., and Fular, V.J., J. Semiconductors, 2014, vol. 35, p. 113001.CrossRefGoogle Scholar
  26. 26.
    Mehta, C., Saini, G.S.S., Abbas, J.M., and Tripathi, S.K., Appl. Surf. Sci., 2009, vol. 256, pp. 608–618.CrossRefGoogle Scholar
  27. 27.
    Kale, R.B. and Lokhande, C.D., Appl. Surf. Sci., 2005, vol. 252, pp. 929–938.CrossRefGoogle Scholar
  28. 28.
    Agawane, G.L., Shin, S.W., Suryawanshi, M.P., and Kim, J.H., Ceram. Int., 2014, vol. 40, pp. 367–374.CrossRefGoogle Scholar
  29. 29.
    Murali, K.R. and Balasubramanian, M., Mater. Sci. Eng.: A, 2006, vol. 431, pp. 1–2.CrossRefGoogle Scholar
  30. 30.
    Zhang, T., Xu, N., Shen, Y., Hu, W., Sun, J., and Ying, Z., J. Electron. Mater., 2007, vol. 36, pp. 75–80.CrossRefGoogle Scholar
  31. 31.
    Hsieh, P.-T., Chen, Y.-C., Kao, K.-S., and Wang, C.-M., J. Appl. Phys. A, 2008, vol. 90, pp. 317–321.CrossRefGoogle Scholar
  32. 32.
    Marrani, A.G., Caprioli, F., Boccia, A., and Decker, F., J. Solid State Electrochem., 2014, vol. 18, no. 2, pp. 505–513.CrossRefGoogle Scholar
  33. 33.
    Santhosh, V.S., Babu, K.R., and Deepa, M., J. Mater. Sci.: Mater. Electron., 2014, vol. 25, pp. 224–232.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. N. Maskaeva
    • 1
    • 2
  • V. F. Markov
    • 1
    • 2
  • E. A. Fedorova
    • 1
  • M. V. Kuznetsov
    • 3
  1. 1.Ural Federal University named after the first President of Russia B.N. YeltsinYekaterinburgRussia
  2. 2.Ural Institute, State Fire ServiceEMERCOM of RussiaYekaterinburgRussia
  3. 3.Institute of Solid State Chemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations