Russian Journal of Applied Chemistry

, Volume 91, Issue 9, pp 1500–1512 | Cite as

Analysis of the Fundamental Aspects of Oxidation of Rich Methane Mixtures in Matrix-Type Converters

  • V. I. Savchenko
  • O. V. Shapovalova
  • A. V. Nikitin
  • V. S. Arutyunov
  • I. V. SedovEmail author
Organic Synthesis and Industrial Organic Chemistry


Equilibrium distribution of oxidation products was calculated for the system СН4 + ψО2 → products at 0.5 < ψ < 1.0 and temperature of 900–1700 K, with the existence of phase transitions in the system taken into account. Two regions are conditionally distinguished: I, at ψ > 0.6 and temperatures higher than 1000–1200 K (depending on ψ), when there is no Csolid in the system; and II, if this component is present in the system. The range of working temperatures and values of ψ, at which the matrix conversion process occurs, falls within region I. A nearly 100% conversion of oxygen and methane is reached within this region; there is no Csolid; and CO, H2, CO2, and H2O are products of the partial oxidation of methane in equilibrium. The temperature limits within which the system passes into region II and the formation of the synthesis gas is accompanied by the appearance of soot were determined. Formulas describing the dependence of the yield of oxidation products per mole of converted methane at various ratios between the methane and oxygen concentrations were derived. An expression was obtained on the basis of experimental data, which can be used to approximately calculate to within <6% the most important technological parameter of the matrix conversion process, [H2]/[CO] ratio.


methane synthesis gas oxidation matrix conversion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hickman, D.A. and Schmidt, L.D., Science, 1993, vol. 259 (5093), pp. 343–346.CrossRefGoogle Scholar
  2. 2.
    Lanza, R., Velascoa, J.A., and Jaras, S.G., Catalysis, 2011, vol. 23, pp. 50–95.CrossRefGoogle Scholar
  3. 3.
    Al-Sayari, S.A., Open Catal. J., 2013, vol. 6, pp. 17–28.CrossRefGoogle Scholar
  4. 4.
    Smith, C.H., Pineda, D.I., and Ellzey, J.L., Combust. Flame, 2013, vol. 160, no. 3, pp. 557–564.CrossRefGoogle Scholar
  5. 5.
    Dorofeenko, S.O. and Polianczyk, E.V., Chem. Eng. J., 2016, vol. 292, pp. 183–189.CrossRefGoogle Scholar
  6. 6.
    Loukou, A., Frenzel, I., Klein, J., and Trimis, D., Int. J. Hydrogen Energy, 2012, vol. 37, pp. 16686–16696.CrossRefGoogle Scholar
  7. 7.
    Arutyunov, V.S., Shmelev, V.M., Rakhmetov, A.N., and Shapovalova, O.V., Ind. Eng. Chem. Res., 2014, vol. 53, no. 5, pp. 1754–1759.CrossRefGoogle Scholar
  8. 8.
    Arutyunov, V.S., Savchenko, V.I., Sedov, I.V., Shmelev, V.M., Nikitin, A.V., Fokin, I.G., Eksanov, S.A., Shapovalova, O.V., and Timofeev, K.A., Russ. J. Appl. Chem., 2016, vol. 89, no. 11, pp. 1814–1822.CrossRefGoogle Scholar
  9. 9.
    Wagman, D.D., Kilpatrick, J.E., Taylor, W.J., Pizer, K.S., and Rossini, F.D., J. Res. Nat. Bur. Stand., 1945, vol. 34, pp. 143–161.CrossRefGoogle Scholar
  10. 10.
    Zhu, J., Zhang, D., and King, K.D., Fuel, 2001, vol. 80, pp. 899–905.CrossRefGoogle Scholar
  11. 11.
    Istadi, I., Syngas: Production, Applications and Environmental, Antonius Indarto and Jelliarko Palguandi, Eds., Nova Science Publishers, 2013, pp. 99–120..Google Scholar
  12. 12.
    Zhu, Q., Zhao, X., and Deng, Y., J. Nat. Gas Chem., 2004, vol. 13, pp. 191–203.Google Scholar
  13. 13.
    Lutza, A.E., Bradshawa, R.W., Brombergb, L., and Rabinovich, A., Int. J. Hydrogen Energy, 2004, vol. 29, pp. 809–816.CrossRefGoogle Scholar
  14. 14.
    Shapovalova, O.V., Chun, Y.N., Lim, M.S., Shmelev, V.M., and Arutyunov, V.S., Int. J. Hydrogen Energy, 2012, vol. 37, pp. 14040–14046.CrossRefGoogle Scholar
  15. 15.
    Sasaki, K. and Teraoka, Y., J. Electrochem. Soc., 2003, vol. 150, pp. 885–888.CrossRefGoogle Scholar
  16. 16.
    Savchenko, V.I., Didenko, L.P., and Sementsova, L.A., Petrol. Chem., 1998, vol. 38, no. 1, pp. 62–68.Google Scholar
  17. 17.
    Savchenko, V.I., Didenko, L.P., Sheverdenkin, E.V., Rudakov, V.M., and Arutyunov, V.S., Khim. Fiz., 2005, vol. 24, no. 9, pp. 76–83.Google Scholar
  18. 18.
    Voronetskii, M.S., Didenko, L.P., and Savchenko, V.I., Russ. J. Phys. Chem. B, 2009, vol. 3, no. 2, pp. 216–222.CrossRefGoogle Scholar
  19. 19.
    Parmon, V.N., Termodinamika neravnovesnykh protsessov dlya khimikov (Thwermodynamics of Nonequilibrium Processes for Chemists), Moscow: Intellekt, 2015, pp. 127–164.Google Scholar
  20. 20.
    Constales, D., Yablonsky, G.S., D’hooge, D.R., Thybaut, J.W., and Marin, G.B., Advanced Data Analysis and Modeling in Chemical Engineering, Amsterdam: Elsevier, 2017, pp. 9–34.Google Scholar
  21. 21.
    Trusov, B.G., Proc. XIV Int. Symp. on Chemical Thermodynamics, St Petersburg, Russia, 2002. pp. 483–484.Google Scholar
  22. 22.
    IVTANTHERMO database (2015). (Access date: 14.02.2018).
  23. 23.
    Kul’chakovskii, P.I., Mitberg, E.B., Ermolaev, I.S., Ermolaev, V.S., Solomonik, I.G., and Mordkovich, V.Z., Tepl. Protsessy Tekh., 2016, vol. 8, no. 3, pp. 117–125.Google Scholar
  24. 24.
    York, A.P.E., Xiao, T., and Green, M.L.H., Top Catal., 2003, vol. 22, pp. 345–358.CrossRefGoogle Scholar
  25. 25.
    Enger, B.C., Lodeng, R., and Holmen, A., Appl. Catal., A, 2008, vol. 346, pp. 1–27.CrossRefGoogle Scholar
  26. 26.
    Qingxun Li, Tiefeng Wang, Yefei Liu, and Dezheng Wang, Chem. Eng. J., 2012, vol. 207–208, pp. 235–244.Google Scholar
  27. 27.
    Tianwen Chen, Qi Zhang, Jinfu Wang, and Tiefeng Wang, Chem. Eng. J., 2017, vol. 329, pp. 238–249.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Savchenko
    • 1
  • O. V. Shapovalova
    • 2
  • A. V. Nikitin
    • 1
  • V. S. Arutyunov
    • 1
  • I. V. Sedov
    • 1
    Email author
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations