Russian Journal of Applied Chemistry

, Volume 91, Issue 9, pp 1412–1421 | Cite as

Electrocatalytic Oxidation of Organic Pollutants on Boron-Doped Diamond and Ti–Ru Oxide Anodes in Sulfate Medium

  • T. A. KenovaEmail author
  • G. V. Kornienko
  • O. A. Golubtsova
  • V. L. Kornienko
  • N. G. Maksimov
Applied Electrochemistry and Metal Corrosion Protection


Electrochemical oxidation for degradation of industrial dye Methyl Orange in aqueous sulfate solutions with various electrocatalytic materials: boron-doped diamond electrode and electrode based on titanium and ruthenium oxides. The influence exerted by the main working parameters of electrolysis (current density, concentration of Methyl Orange, pH) on the discoloration efficiency and on the chemical oxygen demand (COD) was examined. It was shown that an increase in the current density and a decrease in the pollutant concentration improve the process efficiency. However, this leads to an increase in the specific electric energy consumption per unit mass of COD. It was found that the boron-doped diamond electrode is a more efficient electrocatalytic material, compared with electrode based on titanium and ruthenium oxides. At low concentrations of Methyl Orange (<50 mg L–1), there exists the possibility in principle of using the electrode based on titanium and ruthenium oxides not only for discoloration, but also for making lower the COD level.


electrocatalytic oxidation boron-doped diamond titanium-ruthenium oxide anode discoloration COD Methyl Orange 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kant, R., Nat. Sci. 2012, vol. 4, pp. 22–26.Google Scholar
  2. 2.
    Przystaś, W., Zabłocka-Godlewska, E., and Grabińska-Sota, E., Water Air Soil Pollut., 2012, vol. 223, pp. 1581–1592.CrossRefGoogle Scholar
  3. 3.
    Holkar, C.R., Jadhav, A.J., Pinjari, D.V., Mahamuni, N.M., and Pandit, A.B., J. Environ. Manag., 2016, vol. 182, pp. 351–366.CrossRefGoogle Scholar
  4. 4.
    Robinson, T., McMullan, G., Marchant, R., and Nigam, P., Bioresour. Technol., 2001, vol. 77, pp. 247–255.CrossRefGoogle Scholar
  5. 5.
    Kharlamova, T.A. and Aliev, Z.M., Russ. J. Electrochem., 2016, vol. 52, pp. 251–259.CrossRefGoogle Scholar
  6. 6.
    Brillas, E. and Martínez-Huitle, C.A., Appl. Catal., B, 2015, vols. 166–167, pp. 603–643.Google Scholar
  7. 7.
    Martínez-Huitle, C.A. and Brillas, E., Appl. Catal., B, 2009, vol. 87, pp. 105–145.CrossRefGoogle Scholar
  8. 8.
    Oturan, M.A., J. Appl. Electrochem., 2000, vol. 30, pp. 475–482.CrossRefGoogle Scholar
  9. 9.
    Martínez-Huitle, C.A. and Ferro, S., Chem. Soc. Rev., 2006, vol. 35, pp. 1324–1340.CrossRefGoogle Scholar
  10. 10.
    Comninellis, C., Electrochim. Acta, 1994, vol. 39, pp. 1857–1863.CrossRefGoogle Scholar
  11. 11.
    Martínez-Huitle, C.A., Dos Santos, E.V., De Araújo, D.M., and Panizza, M., J. Electroanal. Chem., 2012, vol. 674, pp. 103–107.CrossRefGoogle Scholar
  12. 12.
    Enache, T.A., Chiorcea-Paquim, A., Fatibello-Filho, O., and Oliveira-Brett, A.M., Electrochem. Commun., 2009, vol. 11, pp. 1342–1345.CrossRefGoogle Scholar
  13. 13.
    Marselli, B., Garcia-Gomez, J., Michaud, P.A., Rodrigo, M.A., and Comninellis, C., J. Electrochem. Soc., 2003, vol. 150, pp. 79–83.CrossRefGoogle Scholar
  14. 14.
    Panizza, M. and Cerisola, G., Electrochim. Acta, 2005, vol. 51, pp. 191–199.CrossRefGoogle Scholar
  15. 15.
    Rodrigo, M.A., Cañizares, P., Sánchez-Carretero, A., and Sáez, C., Catal. Today, 2010, vol. 151, pp. 173–177.CrossRefGoogle Scholar
  16. 16.
    Deborde, M. and Von-Gunten, U., Water Res., 2008, vol. 42, pp. 13–51.CrossRefGoogle Scholar
  17. 17.
    Morais, C.C.O, Da Silva, A.J.C., Ferreira, M.B., De Araújo, D.M., Zanta, C.L.P.S., and Castro, S.S.L., Electrocatal., 2013, vol. 4, pp. 312–319.CrossRefGoogle Scholar
  18. 18.
    Fisher, H., Praktikum po obshchei khimii: Vvodnyi kurs po ekologicheski bezopasnoi programme s eksperimentami po regeneratsii khimicheskikh reaktivov, Ch. 2, Organicheskaya i fizicheskaya khimiya (Practical Course of General Chemistry, Introductory Course of Ecologically Safe Program with Experiments on Regeneration of Chemical Reagents, Part 2, Organic and Physical Chemistry), Novosibirsk: Nauka, 2002. 2nd ed.Google Scholar
  19. 19.
    Fedorova, A.I. and Nikol’skaya, A.N., Praktikum po ekologii i okhrane okruzhayushchei sredy (Practical Course of Ecology and Environment Protection), Moscow: VLADOS, 2003.Google Scholar
  20. 20.
    Morsi, M.S., Al-Sarawy, A.A., and Shehab El-Dein, W.A., Desalin. Water Treat., 2011, vol. 26, pp. 301–308.CrossRefGoogle Scholar
  21. 21.
    Hamza, M., Abdelhedi, R., Brillas, E., and Sires, I., J. Electroanal. Chem., 2009, vol. 627, pp. 41–50.CrossRefGoogle Scholar
  22. 22.
    Panizza, M. and Cerisola, G., Ind. Eng. Chem. Res., 2008, vol. 47, pp. 6816–6820.CrossRefGoogle Scholar
  23. 23.
    Matzek, L.W. and Carter, K.E., Chemosphere, 2016, vol. 151, pp. 178–188.CrossRefGoogle Scholar
  24. 24.
    Thiam, A., Sirés, I., Garrido, J.A., Rodríguez, R.M., and Brillas, E., Sep. Purif. Technol., 2015, vol. 140, pp. 43–52.CrossRefGoogle Scholar
  25. 25.
    Acero, J.L., Benítez, F.J., Real, F.J., and Rodríguez, E., Sep. Purif. Technol., 2018, vol. 201, pp. 41–50.CrossRefGoogle Scholar
  26. 26.
    Song, S., Fan, J., He, Z., Zhan, L., Liu, Z., Chen, J., and Xu, X., Electrochim. Acta, 2010, vol. 55, pp. 3606–3613.CrossRefGoogle Scholar
  27. 27.
    Carneiro, P.A., Fugivara, C.S., Nogueira, R.F.P., Boralle, N., and Zanoni, M.V.B., Port. Electrochim. Acta, 2003, vol. 21, pp. 49–67.CrossRefGoogle Scholar
  28. 28.
    Hmani, E., Samet, Y., and Abdelhédi, R., Diamond Relat. Mater., 2012, vol. 30, pp. 1–8.CrossRefGoogle Scholar
  29. 29.
    Moreno-Casillas, H.A., Cocke, D.L., Gomes, J.A.G., Morkovsky, P., Parga, J.R., and Peterson, E., Sep. Purif. Technol., 2007, vol. 56, pp. 204–211.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. A. Kenova
    • 1
    Email author
  • G. V. Kornienko
    • 1
    • 2
  • O. A. Golubtsova
    • 1
    • 2
  • V. L. Kornienko
    • 1
  • N. G. Maksimov
    • 1
  1. 1.Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Federal Research Center, Institute of Chemistry and Chemical Technology, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Reshetnev Siberian State University of Science and TechnologyKrasnoyarskRussia

Personalised recommendations