Russian Journal of Applied Chemistry

, Volume 90, Issue 12, pp 2019–2027 | Cite as

Preparation of Novel Coumarin Cyclic Polymer/Montmorillonite Based Nanocomposites

Various Technological Processes
  • 2 Downloads

Abstract

In present study, the synthesis, characterization, and thermal properties of novel coumarin cyclic polymer poly(3-benzoyl coumarin-7-yl-methacrylate) polymer/montmorillonite based nanocomposites were performed. At the characterizations of nanomaterials FTIR, XRD, DSC and TGA techniques were used. It was determined from XRD measurements that the morphologies of nanocomposites were shifted from exfoliated type to intercalated type when the clay ratio in the coumarin polymer matrix was increased from 1 to 5% level. From DSC analysis, a partial increasing at the glass transition temperatures of nanocomposites was observed related to clay ratios. On the other hand, a positive correlation was observed between the clay ratio and thermal stability of nanomaterials from TGA analysis. Also, the increasing of decomposition temperatures of nanocomposites according to homopolymer was recorded to be 9–17°C.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feldman, D., J. Macromol. Sci. A.,, 2013, vol. 50, no. 12, pp. 1241–1249.CrossRefGoogle Scholar
  2. 2.
    Utracki, L.A., Sepehr, M., and Boccaleri, E., Polym. Adv. Technol., 2007, vol. 18, no. 1, pp. 1–37.CrossRefGoogle Scholar
  3. 3.
    Lerari, D., Peeterbroeck, S., Benali, S. et al., J. Appl. Polym. Sci., 2011, vol. 121: no. 3, pp. 1355–1364.CrossRefGoogle Scholar
  4. 4.
    Lee, M.H., Dan, C.H., Kim, J.H. et al., Polymer, 2006, vol. 47, no. 12, pp. 4359–4369.CrossRefGoogle Scholar
  5. 5.
    Haraguchi, K., Curr. Opin. Solid State Mater. Sci., 2007, vol. 11, no. 3, pp. 47–54.CrossRefGoogle Scholar
  6. 6.
    Powell, C.E., and Beall, G.W., Curr. Opin. Solid State Mater. Sci., 2006, vol. 10, no. 2, pp. 73–80.CrossRefGoogle Scholar
  7. 7.
    Wang, Y., and Chen, W.C., Compos. Interface, 2010, vol. 17, no. 9, pp. 803–829.CrossRefGoogle Scholar
  8. 8.
    Qiu, L., and Qu, B., J. Colloid Interface Sci., 2006, vol. 301, no. 2, pp. 347–351.CrossRefGoogle Scholar
  9. 9.
    Qiu, L., Chen, W., and Qu, B., Polymer, 2006, vol. 47, no. 3, pp. 922–930.CrossRefGoogle Scholar
  10. 10.
    Wang, H.W., Chang, K.C., Yeh, J.M., and Liou, S.J., J. Appl. Polym. Sci., 2003, vol. 91, no. 2, pp. 1368–1373.CrossRefGoogle Scholar
  11. 11.
    Yeh, J.M., Liou, S.J., Lin, C.G. et al., J. Appl. Polym. Sci., 2004, vol. 92, no. 3, pp. 1970–1976.CrossRefGoogle Scholar
  12. 12.
    Kim, M.H., Park, C.I., Choi, W.M. et al., J. Appl. Polym. Sci., 2004, vol. 92, no. 4, pp. 2144–2150.CrossRefGoogle Scholar
  13. 13.
    Achilias, D.S., Panayotidou, E., and Zuburtikudis, I., Thermochim. Acta, 514, no. 1, pp. 58–66.Google Scholar
  14. 14.
    Patel, H.J., Patel, M.G., Patel, A.K., et al., Express Polym. Lett., 2008, vol. 2, no. 10, pp. 727–734.CrossRefGoogle Scholar
  15. 15.
    Nikhil, B., Shikha, B., Anil, P., and Prakash, N.B., Int. Res. J. Pharmacy (IRJP), 2012, vol. 3, no. 7, pp. 24–29.Google Scholar
  16. 16.
    Skowronski, L., Krupka, O., Smokal, V., et al., Opt. Mater., 2015, vol. 47, pp. 18–23.CrossRefGoogle Scholar
  17. 17.
    Tasior, M., Kim, D., Singha, S., et al., J. Mater. Chem., 2015, vol. 3, no. 7, pp. 1421–1446.Google Scholar
  18. 18.
    Brun, M.P., Bischoff, L., and Garbay, C., Angew. Chem. Int. Edit., 2004, vol. 43, no. 26, pp. 3432–3436.CrossRefGoogle Scholar
  19. 19.
    Zhao, L., Loy, D.A., and Shea, K.J., J. Am. Chem. Soc., 2006, vol. 128, no. 44, pp. 14250–14251.CrossRefGoogle Scholar
  20. 20.
    Jackson, P.O., O’Neill, M., Duffy, W.L., et al., Chem. Mater., 2001, vol. 13, no. 2, pp. 694–703.CrossRefGoogle Scholar
  21. 21.
    Kim, C., Trajkovska, A., Wallace, J.U., and Chen, S.H., Macromolecules, 2006, vol. 39, no. 11, pp. 3817–3823.CrossRefGoogle Scholar
  22. 22.
    Tian, Y., Akiyama, E., Nagase, Y., et al., J. Mater. Chem., 2004, vol. 14, no. 24, pp. 3524–3531.CrossRefGoogle Scholar
  23. 23.
    Soine, T.O., J. Pharm. Sci., 1964, vol. 53, pp. 231–264.CrossRefGoogle Scholar
  24. 24.
    Sharma, P., and Pritmani, S., Indian J. Chem., Sect B, 1999, vol. 38, no. 9, pp. 1139–1142.Google Scholar
  25. 25.
    Patonay, T., Litkei, G., Bognar, R., et al., Pharmazie, 1984, vol. 39, no. 2, pp. 84–91.Google Scholar
  26. 26.
    Shaker, R.M., Pharmazie, 1996, vol. 51, no. 3, pp. 148–151.Google Scholar
  27. 27.
    Emmanuel-Giota, A.A., Fylaktakidou, K.C., Hadjipavlou-Litina, D.J., et al., J. Heterocycl. Chem., 2001, vol. 38, no. 3, pp. 717–722.CrossRefGoogle Scholar
  28. 28.
    Nofal, Z.M., El-Zahar, M.I., and Abd El-Karim, S.S., Molecules, 2000, vol. 5, pp. 99–113.CrossRefGoogle Scholar
  29. 29.
    Srivastava, A., Mishra, V., Singh, P., and Kumar, R., J. Appl. Polym. Sci., 2012, vol. 126, no. 2, pp. 395–407.CrossRefGoogle Scholar
  30. 30.
    Rabahi, A., Makhloufi-Chebli, M., Hamdi, S.M., et al., J. Mol. Liq., 2014, vol. 195, pp. 240–247.CrossRefGoogle Scholar
  31. 31.
    Donovalova, J., Cigan, M., Stankovicova, H., et al., Molecules, 2012, 17, no. 3, pp. 3259–3276.CrossRefGoogle Scholar
  32. 32.
    Venkatesan, S., Ranjithkumar, B., Rajeshkumar, S., and Anver Basha, K., Chin. J. Polym. Sci., 2014, vol. 32, no. 10, pp. 1373–1380.CrossRefGoogle Scholar
  33. 33.
    Essaidi, Z., Krupka, O., Iliopoulos, K., et al., Opt. Mater., 2013, vol. 35, no. 3, pp. 576–581.CrossRefGoogle Scholar
  34. 34.
    Zhang, C., Liang, R., Jiang, C., et al., J. Appl. Polym. Sci., 2008, vol. 108, no. 4, pp. 2667–2673.CrossRefGoogle Scholar
  35. 35.
    Kurt, A. and Koca, M., J. Eng. Research, 2016, vol. 4, no. 4, pp. 46–65.Google Scholar
  36. 36.
    Zhang, W.A., Chen, D.Z., Xu, H.Y. et al., Eur. Polym. J., 2003, vol. 39, no. 12, pp. 2323–2328.CrossRefGoogle Scholar
  37. 37.
    Krishna, S.V., and Pugazhenthi, G., J. Appl. Polym. Sci., 2011, vol. 120, no. 3, pp. 1322–1336.CrossRefGoogle Scholar
  38. 38.
    Fu, X. and Qutubuddin, S., Polymer, 2001, vol. 42, no. 2, pp. 807–813.CrossRefGoogle Scholar
  39. 39.
    Kurt, A. and Yılmaz, P., Kuwait J. Sci., 2016, 43, no. 2, pp. 172–184.Google Scholar
  40. 40.
    Stoeffler, K., Lafleur, P.G., and Denault, J., Polym. Eng. Sci., 2008, vol. 48, no. 8, pp. 1449–1466.CrossRefGoogle Scholar
  41. 41.
    Fomine, S., Rivera, E., Fomina, E., et al., Polymer, 1998, vol. 39, no. 15, pp. 3551–3558.CrossRefGoogle Scholar
  42. 42.
    Zidelkheir, B., Boudjemaa, S., Abdel, G.M., and Djelloui, B., Iran. Polym. J., 2006, vol. 15, no. 8, pp. 645–653.Google Scholar
  43. 43.
    Wang, H.W., Chang, K.C., Yeh, J.M., and Liou, S.J., J. Appl. Polym. Sci., 2004, vol. 91, no. 2, pp. 1368–1373.CrossRefGoogle Scholar
  44. 44.
    Vyazovkin, S., Dranca, I., Fan, X., and Advincula, R., Macromol. Rapid Commun., 2004, vol. 25, no. 3, pp. 498–503.CrossRefGoogle Scholar
  45. 45.
    Qiu, L., Chen, W., and Qu, B., Polym. Degrad. Stabil., 2005, vol. 87, no. 3, pp. 433–440.CrossRefGoogle Scholar
  46. 46.
    Hu, Y.H., Chen, C.Y., and Wang, C.C., Polym. Degrad. Stabil., 2004, vol. 84, no. 3, pp. 545–553.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Adiyaman UniversityAdiyamanTurkey

Personalised recommendations