Russian Journal of General Chemistry

, Volume 89, Issue 10, pp 2097–2102 | Cite as

Interaction of Glutathione-Stabilized Gold Nanoclusters with Doxorubicin and Polycation

  • N. P. Iakimov
  • Va. R. Abdullina
  • P. A. Sharanov
  • N. V. Alov
  • V. N. Orlov
  • I. D. Grozdova
  • N. S. Melik-NubarovEmail author


Glutathione-capped gold nanoclusters display polyanionic properties that are manifested in the interaction with cationic species. The nanoclusters form complexes with doxorubicin with effective dissociation constant about 10 µM that increased by an order of magnitude in the presence of 0.15 M NaCl confirming electrostatic character of binding. Adsorption of polylysine arose an increase in the fluorescence of gold nanoclusters due to aggregation induced emission enhancement effect. Fluorescence of the complexes increased several-fold upon addition of up to 1 M of KCl suggesting contribution of non-Coulombic forces in the stabilization of aggregates of gold nanoclusters.


gold nanoclusters polyelectrolytes doxorubicin aggregation induced emission enhancement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work is performed as a part of the Project “Modern Problems of Chemistry and Physico-chemistry of High Molecular Compounds.”

Conflict of Interest

No conflict of interest was declared by the authors.

Supplementary material

11176_2019_3908_MOESM1_ESM.pdf (128 kb)
Interaction of Glutathione-Stabilized Gold Nanoclusters with Doxorubicin and Polycation


  1. 1.
    Saha, K., Agasti, S.S., Kim, C., Li, X., and Rotello, V.M., Chem. Rev. 2012, vol. 112, p. 2739. CrossRefGoogle Scholar
  2. 2.
    Chen, G., Roy, I., Yang, C., and Prasad, P., Chem. Rev. 2016, vol. 116, p. 2826. CrossRefGoogle Scholar
  3. 3.
    Ali, M.R.K., Wu, Y., and El-Sayed, M.A., J. Phys. Chem. C, 2019, vol. 123, p. 15375. CrossRefGoogle Scholar
  4. 4.
    Tregubov, A.A., Nikitin, P.I., and Nikitin, M.P. Chem. Rev., 2018, vol. 118, p. 10294. CrossRefGoogle Scholar
  5. 5.
    Kubo, R., J. Phys. Soc. Jpn., 1962, vol. 17, p. 975. CrossRefGoogle Scholar
  6. 6.
    Palmal, S. and Jana, N.R., WIREs Nanomed. Nanobiotechnol., 2014, vol. 6, p. 102. CrossRefGoogle Scholar
  7. 7.
    Buchman, J.T., Hudson-Smith, N.V., Landy, K.M., and Haynes, C.L., Acc. Chem. Res. 2019, vol. 52, p. 1632. CrossRefGoogle Scholar
  8. 8.
    Wang, H.-H., Lin, C.-A.J., Lee, C.-H., Lin, Y.-C., Tseng, Y.-M., Hsieh, C.-L., Chen, C.-H., Tsai, C.-H., Hsieh, C.-T., Shen, J.-L., Chan, W.-H., Chang, W.H., and Yeh, H.-I. ACS Nano, 2011, vol. 5, p. 4337. CrossRefGoogle Scholar
  9. 9.
    Liu, M., Tang, F., Yang, Z., Xu, J., and Yang, X., J. Anal. Meth. Chem., 2019, p. 1095148. Google Scholar
  10. 10.
    Vacher, M., Galván, I.F., Ding, B.-W., Schramm, S., Berraud-Pache, R., Naumov, P., Ferré, N., Liu, Y.-J., Navizet, I., Roca-Sanjuán, R., Baader, W.J., and Lindh, R., Chem. Rev., 2018, vol. 118, p. 6927. CrossRefGoogle Scholar
  11. 11.
    Zhang, L., He, N., and Lu, C., Anal. Chem., 2015, vol. 87, p. 1351. CrossRefGoogle Scholar
  12. 12.
    Du, Y., Sheng, H., Astruc, D., and Zhu, M., Chem. Rev., 2019.
  13. 13.
    Kang, Y., Ye, X., and Murray, C.B., Angew. Chem., 2010, vol. 122, p. 6292. CrossRefGoogle Scholar
  14. 14.
    Huang, H., du Toit, H., Ben-Jaber, S., Wu, G., Panariello, L., Thanh, N.T.K., Parkin, I.P., and Gavriilidis, A., React. Chem. Eng., 2019, vol. 4, p. 884. CrossRefGoogle Scholar
  15. 15.
    Schaaff, T.G., Knight, G., Shafigullin, M.N., Borkman, R.F., and Whetten, R.L., J. Phys. Chem. B, 1998, vol. 102, p. 10643. CrossRefGoogle Scholar
  16. 16.
    Negishi, Y., Nobusada, K., and Tsukuda, T., J. Am. Chem. Soc., 2005, vol. 127, p. 5261. CrossRefGoogle Scholar
  17. 17.
    You, J.G., Lu, C.Y., Krishna Kumar, A.S., and Tseng, W.L., Nanoscale. 2018, vol. 10, p. 17691. CrossRefGoogle Scholar
  18. 18.
    Russell, B.A., Jachimska, B., and Chen, Y., J. Photochem. Photobiol. B, 2018, vol. 187, p. 131. CrossRefGoogle Scholar
  19. 19.
    You, J.G. and Tseng, W.L., Anal. Chim. Acta, 2019, vol. 1078, p. 101. CrossRefGoogle Scholar
  20. 20.
    Mei, J., Hong, Y., Lam, J.W.Y., Qin, A., Tang, Y., and Tang, B.Z., Adv. Mater., 2014, vol. 26, p. 5429. CrossRefGoogle Scholar
  21. 21.
    Goswami, N., Yao, Q., Luo, Z., Li, J., Chen, T., and Xie, J., J. Phys. Chem. Lett., 2016, vol. 7, p. 962. CrossRefGoogle Scholar
  22. 22.
    Schmidbaur, H., and Schier, A., Chem. Soc. Rev., 2012, vol. 41, p. 370. CrossRefGoogle Scholar
  23. 23.
    de Wolf F.A., Deme, R.A., Bets, D., van Kats, C., and de Kruijff, B., FEBS Lett., 1991, vol. 288, p. 237. Scholar
  24. 24.
    Francos, M.A.E., Badía-Laíño, R., and Díaz-García, M.E., Microchim. Acta, 2015, vol. 182, p. 1591. CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. P. Iakimov
    • 1
  • Va. R. Abdullina
    • 1
  • P. A. Sharanov
    • 1
  • N. V. Alov
    • 1
  • V. N. Orlov
    • 1
  • I. D. Grozdova
    • 1
  • N. S. Melik-Nubarov
    • 1
    Email author
  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations