Interaction of Glutathione-Stabilized Gold Nanoclusters with Doxorubicin and Polycation
- 5 Downloads
Abstract
Glutathione-capped gold nanoclusters display polyanionic properties that are manifested in the interaction with cationic species. The nanoclusters form complexes with doxorubicin with effective dissociation constant about 10 µM that increased by an order of magnitude in the presence of 0.15 M NaCl confirming electrostatic character of binding. Adsorption of polylysine arose an increase in the fluorescence of gold nanoclusters due to aggregation induced emission enhancement effect. Fluorescence of the complexes increased several-fold upon addition of up to 1 M of KCl suggesting contribution of non-Coulombic forces in the stabilization of aggregates of gold nanoclusters.
Keywords
gold nanoclusters polyelectrolytes doxorubicin aggregation induced emission enhancementPreview
Unable to display preview. Download preview PDF.
Notes
Funding
The work is performed as a part of the Project “Modern Problems of Chemistry and Physico-chemistry of High Molecular Compounds.”
Conflict of Interest
No conflict of interest was declared by the authors.
Supplementary material
References
- 1.Saha, K., Agasti, S.S., Kim, C., Li, X., and Rotello, V.M., Chem. Rev. 2012, vol. 112, p. 2739. https://doi.org/10.1021/cr2001178 CrossRefGoogle Scholar
- 2.Chen, G., Roy, I., Yang, C., and Prasad, P., Chem. Rev. 2016, vol. 116, p. 2826. https://doi.org/10.1021/acs.chemrev.5b00148 CrossRefGoogle Scholar
- 3.Ali, M.R.K., Wu, Y., and El-Sayed, M.A., J. Phys. Chem. C, 2019, vol. 123, p. 15375. https://doi.org/10.1021/acs.jpcc.9b01961 CrossRefGoogle Scholar
- 4.Tregubov, A.A., Nikitin, P.I., and Nikitin, M.P. Chem. Rev., 2018, vol. 118, p. 10294. https://doi.org/10.1021/acs.chemrev.8b00198 CrossRefGoogle Scholar
- 5.Kubo, R., J. Phys. Soc. Jpn., 1962, vol. 17, p. 975. https://doi.org/10.1143/JPSJ.17.975 CrossRefGoogle Scholar
- 6.Palmal, S. and Jana, N.R., WIREs Nanomed. Nanobiotechnol., 2014, vol. 6, p. 102. https://doi.org/10.1002/wnan.1245 CrossRefGoogle Scholar
- 7.Buchman, J.T., Hudson-Smith, N.V., Landy, K.M., and Haynes, C.L., Acc. Chem. Res. 2019, vol. 52, p. 1632. https://doi.org/10.1021/acs.accounts.9b00053 CrossRefGoogle Scholar
- 8.Wang, H.-H., Lin, C.-A.J., Lee, C.-H., Lin, Y.-C., Tseng, Y.-M., Hsieh, C.-L., Chen, C.-H., Tsai, C.-H., Hsieh, C.-T., Shen, J.-L., Chan, W.-H., Chang, W.H., and Yeh, H.-I. ACS Nano, 2011, vol. 5, p. 4337. https://doi.org/10.1021/nn102752a CrossRefGoogle Scholar
- 9.Liu, M., Tang, F., Yang, Z., Xu, J., and Yang, X., J. Anal. Meth. Chem., 2019, p. 1095148. https://doi.org/10.1155/2019/1095148 Google Scholar
- 10.Vacher, M., Galván, I.F., Ding, B.-W., Schramm, S., Berraud-Pache, R., Naumov, P., Ferré, N., Liu, Y.-J., Navizet, I., Roca-Sanjuán, R., Baader, W.J., and Lindh, R., Chem. Rev., 2018, vol. 118, p. 6927. https://doi.org/10.1021/acs.chemrev.7b00649 CrossRefGoogle Scholar
- 11.Zhang, L., He, N., and Lu, C., Anal. Chem., 2015, vol. 87, p. 1351. https://doi.org/10.1021/ac5041605 CrossRefGoogle Scholar
- 12.Du, Y., Sheng, H., Astruc, D., and Zhu, M., Chem. Rev., 2019. https://doi.org/10.1021/acs.chemrev.8b00726.
- 13.Kang, Y., Ye, X., and Murray, C.B., Angew. Chem., 2010, vol. 122, p. 6292. https://doi.org/10.1002/anie.201003383 CrossRefGoogle Scholar
- 14.Huang, H., du Toit, H., Ben-Jaber, S., Wu, G., Panariello, L., Thanh, N.T.K., Parkin, I.P., and Gavriilidis, A., React. Chem. Eng., 2019, vol. 4, p. 884. https://doi.org/10.1039/C8RE00351C CrossRefGoogle Scholar
- 15.Schaaff, T.G., Knight, G., Shafigullin, M.N., Borkman, R.F., and Whetten, R.L., J. Phys. Chem. B, 1998, vol. 102, p. 10643. https://doi.org/10.1021/jp9830528 CrossRefGoogle Scholar
- 16.Negishi, Y., Nobusada, K., and Tsukuda, T., J. Am. Chem. Soc., 2005, vol. 127, p. 5261. https://doi.org/10.1021/ja042218h CrossRefGoogle Scholar
- 17.You, J.G., Lu, C.Y., Krishna Kumar, A.S., and Tseng, W.L., Nanoscale. 2018, vol. 10, p. 17691. https://doi.org/10.1039/c8nr05050c CrossRefGoogle Scholar
- 18.Russell, B.A., Jachimska, B., and Chen, Y., J. Photochem. Photobiol. B, 2018, vol. 187, p. 131. https://doi.org/10.1016/j.jphotobiol.2018.08.018 CrossRefGoogle Scholar
- 19.You, J.G. and Tseng, W.L., Anal. Chim. Acta, 2019, vol. 1078, p. 101. https://doi.org/10.1016/j.aca.2019.05.069 CrossRefGoogle Scholar
- 20.Mei, J., Hong, Y., Lam, J.W.Y., Qin, A., Tang, Y., and Tang, B.Z., Adv. Mater., 2014, vol. 26, p. 5429. https://doi.org/10.1002/adma.201401356 CrossRefGoogle Scholar
- 21.Goswami, N., Yao, Q., Luo, Z., Li, J., Chen, T., and Xie, J., J. Phys. Chem. Lett., 2016, vol. 7, p. 962. https://doi.org/10.1021/acs.jpclett.5b02765 CrossRefGoogle Scholar
- 22.Schmidbaur, H., and Schier, A., Chem. Soc. Rev., 2012, vol. 41, p. 370. https://doi.org/10.1039/c1cs15182g CrossRefGoogle Scholar
- 23.de Wolf F.A., Deme, R.A., Bets, D., van Kats, C., and de Kruijff, B., FEBS Lett., 1991, vol. 288, p. 237. https://doi.org/10.1016/0014-5793(91)81043-8.CrossRefGoogle Scholar
- 24.Francos, M.A.E., Badía-Laíño, R., and Díaz-García, M.E., Microchim. Acta, 2015, vol. 182, p. 1591. https://doi.org/10.1007/s00604-015-1475-y CrossRefGoogle Scholar