Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 10, pp 2097–2102 | Cite as

Interaction of Glutathione-Stabilized Gold Nanoclusters with Doxorubicin and Polycation

  • N. P. Iakimov
  • Va. R. Abdullina
  • P. A. Sharanov
  • N. V. Alov
  • V. N. Orlov
  • I. D. Grozdova
  • N. S. Melik-NubarovEmail author
Article
  • 5 Downloads

Abstract

Glutathione-capped gold nanoclusters display polyanionic properties that are manifested in the interaction with cationic species. The nanoclusters form complexes with doxorubicin with effective dissociation constant about 10 µM that increased by an order of magnitude in the presence of 0.15 M NaCl confirming electrostatic character of binding. Adsorption of polylysine arose an increase in the fluorescence of gold nanoclusters due to aggregation induced emission enhancement effect. Fluorescence of the complexes increased several-fold upon addition of up to 1 M of KCl suggesting contribution of non-Coulombic forces in the stabilization of aggregates of gold nanoclusters.

Keywords

gold nanoclusters polyelectrolytes doxorubicin aggregation induced emission enhancement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

The work is performed as a part of the Project “Modern Problems of Chemistry and Physico-chemistry of High Molecular Compounds.”

Conflict of Interest

No conflict of interest was declared by the authors.

Supplementary material

11176_2019_3908_MOESM1_ESM.pdf (128 kb)
Interaction of Glutathione-Stabilized Gold Nanoclusters with Doxorubicin and Polycation

References

  1. 1.
    Saha, K., Agasti, S.S., Kim, C., Li, X., and Rotello, V.M., Chem. Rev. 2012, vol. 112, p. 2739.  https://doi.org/10.1021/cr2001178 CrossRefGoogle Scholar
  2. 2.
    Chen, G., Roy, I., Yang, C., and Prasad, P., Chem. Rev. 2016, vol. 116, p. 2826.  https://doi.org/10.1021/acs.chemrev.5b00148 CrossRefGoogle Scholar
  3. 3.
    Ali, M.R.K., Wu, Y., and El-Sayed, M.A., J. Phys. Chem. C, 2019, vol. 123, p. 15375.  https://doi.org/10.1021/acs.jpcc.9b01961 CrossRefGoogle Scholar
  4. 4.
    Tregubov, A.A., Nikitin, P.I., and Nikitin, M.P. Chem. Rev., 2018, vol. 118, p. 10294.  https://doi.org/10.1021/acs.chemrev.8b00198 CrossRefGoogle Scholar
  5. 5.
    Kubo, R., J. Phys. Soc. Jpn., 1962, vol. 17, p. 975.  https://doi.org/10.1143/JPSJ.17.975 CrossRefGoogle Scholar
  6. 6.
    Palmal, S. and Jana, N.R., WIREs Nanomed. Nanobiotechnol., 2014, vol. 6, p. 102.  https://doi.org/10.1002/wnan.1245 CrossRefGoogle Scholar
  7. 7.
    Buchman, J.T., Hudson-Smith, N.V., Landy, K.M., and Haynes, C.L., Acc. Chem. Res. 2019, vol. 52, p. 1632.  https://doi.org/10.1021/acs.accounts.9b00053 CrossRefGoogle Scholar
  8. 8.
    Wang, H.-H., Lin, C.-A.J., Lee, C.-H., Lin, Y.-C., Tseng, Y.-M., Hsieh, C.-L., Chen, C.-H., Tsai, C.-H., Hsieh, C.-T., Shen, J.-L., Chan, W.-H., Chang, W.H., and Yeh, H.-I. ACS Nano, 2011, vol. 5, p. 4337.  https://doi.org/10.1021/nn102752a CrossRefGoogle Scholar
  9. 9.
    Liu, M., Tang, F., Yang, Z., Xu, J., and Yang, X., J. Anal. Meth. Chem., 2019, p. 1095148.  https://doi.org/10.1155/2019/1095148 Google Scholar
  10. 10.
    Vacher, M., Galván, I.F., Ding, B.-W., Schramm, S., Berraud-Pache, R., Naumov, P., Ferré, N., Liu, Y.-J., Navizet, I., Roca-Sanjuán, R., Baader, W.J., and Lindh, R., Chem. Rev., 2018, vol. 118, p. 6927.  https://doi.org/10.1021/acs.chemrev.7b00649 CrossRefGoogle Scholar
  11. 11.
    Zhang, L., He, N., and Lu, C., Anal. Chem., 2015, vol. 87, p. 1351.  https://doi.org/10.1021/ac5041605 CrossRefGoogle Scholar
  12. 12.
    Du, Y., Sheng, H., Astruc, D., and Zhu, M., Chem. Rev., 2019.  https://doi.org/10.1021/acs.chemrev.8b00726.
  13. 13.
    Kang, Y., Ye, X., and Murray, C.B., Angew. Chem., 2010, vol. 122, p. 6292.  https://doi.org/10.1002/anie.201003383 CrossRefGoogle Scholar
  14. 14.
    Huang, H., du Toit, H., Ben-Jaber, S., Wu, G., Panariello, L., Thanh, N.T.K., Parkin, I.P., and Gavriilidis, A., React. Chem. Eng., 2019, vol. 4, p. 884.  https://doi.org/10.1039/C8RE00351C CrossRefGoogle Scholar
  15. 15.
    Schaaff, T.G., Knight, G., Shafigullin, M.N., Borkman, R.F., and Whetten, R.L., J. Phys. Chem. B, 1998, vol. 102, p. 10643.  https://doi.org/10.1021/jp9830528 CrossRefGoogle Scholar
  16. 16.
    Negishi, Y., Nobusada, K., and Tsukuda, T., J. Am. Chem. Soc., 2005, vol. 127, p. 5261.  https://doi.org/10.1021/ja042218h CrossRefGoogle Scholar
  17. 17.
    You, J.G., Lu, C.Y., Krishna Kumar, A.S., and Tseng, W.L., Nanoscale. 2018, vol. 10, p. 17691.  https://doi.org/10.1039/c8nr05050c CrossRefGoogle Scholar
  18. 18.
    Russell, B.A., Jachimska, B., and Chen, Y., J. Photochem. Photobiol. B, 2018, vol. 187, p. 131.  https://doi.org/10.1016/j.jphotobiol.2018.08.018 CrossRefGoogle Scholar
  19. 19.
    You, J.G. and Tseng, W.L., Anal. Chim. Acta, 2019, vol. 1078, p. 101.  https://doi.org/10.1016/j.aca.2019.05.069 CrossRefGoogle Scholar
  20. 20.
    Mei, J., Hong, Y., Lam, J.W.Y., Qin, A., Tang, Y., and Tang, B.Z., Adv. Mater., 2014, vol. 26, p. 5429.  https://doi.org/10.1002/adma.201401356 CrossRefGoogle Scholar
  21. 21.
    Goswami, N., Yao, Q., Luo, Z., Li, J., Chen, T., and Xie, J., J. Phys. Chem. Lett., 2016, vol. 7, p. 962.  https://doi.org/10.1021/acs.jpclett.5b02765 CrossRefGoogle Scholar
  22. 22.
    Schmidbaur, H., and Schier, A., Chem. Soc. Rev., 2012, vol. 41, p. 370.  https://doi.org/10.1039/c1cs15182g CrossRefGoogle Scholar
  23. 23.
    de Wolf F.A., Deme, R.A., Bets, D., van Kats, C., and de Kruijff, B., FEBS Lett., 1991, vol. 288, p. 237.  https://doi.org/10.1016/0014-5793(91)81043-8.CrossRefGoogle Scholar
  24. 24.
    Francos, M.A.E., Badía-Laíño, R., and Díaz-García, M.E., Microchim. Acta, 2015, vol. 182, p. 1591.  https://doi.org/10.1007/s00604-015-1475-y CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. P. Iakimov
    • 1
  • Va. R. Abdullina
    • 1
  • P. A. Sharanov
    • 1
  • N. V. Alov
    • 1
  • V. N. Orlov
    • 1
  • I. D. Grozdova
    • 1
  • N. S. Melik-Nubarov
    • 1
    Email author
  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations